LMI Control Toolbox For Use with MATLAB ${ }^{\circ}$

Pascal Gahinet
Arkadi Nemirovski
Alan J. Laub
Mahmoud Chilali

- Visualization
- Programming

How to Contact The MathWorks:

www.mathworks.com
comp.soft-sys.matlab
support@mathworks.com
suggest@mathworks.com
bugs@mathworks.com
doc@mathworks.com
service@mathworks.com
info@mathworks.com
Web
Newsgroup

Technical support

Product enhancement suggestions
Bug reports
Documentation error reports
Order status, license renewals, passcodes
Sales, pricing, and general information
508-647-7000
Phone
508-647-7001
Fax
The MathWorks, Inc.
Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

LMI Control Toolbox User's Guide

© COPYRIGHT 1995 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by or for the federal government of the United States. By accepting delivery of the Program, the government hereby agrees that this software qualifies as "commercial" computer software within the meaning of FAR Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part 252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agreement shall pertain to the government's use and disclosure of the Program and Documentation, and shall supersede any conflicting contractual terms or conditions. If this license fails to meet the government's minimum needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to MathWorks.
MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and TargetBox is a trademark of The MathWorks, Inc.
Other product or brand names are trademarks or registered trademarks of their respective holders.
Printing History: May 1995 First printing New for Version 1

Preface

About the Authors viii
Acknowledgments ix
Introduction
1
Linear Matrix Inequalities 1-2
Toolbox Features $1-3$
LMIs and LMI Problems 1-4
The Three Generic LMI Problems 1-5
Further Mathematical Background 1-9
References 1-10
Uncertain Dynamical Systems
2
Linear Time-Invariant Systems 2-3
SYSTEM Matrix 2-3
Time and Frequency Response Plots 2-6
Interconnections of Linear Systems 2-9
Model Uncertainty 2-12
Uncertain State-Space Models 2-14
Polytopic Models 2-14
Affine Parameter-Dependent Models 2-15
Quantification of Parameter Uncertainty 2-17
Simulation of Parameter-Dependent Systems 2-19
From Affine to Polytopic Models 2-20
Example 2-21
Linear-Fractional Models of Uncertainty $2-23$
How to Derive Such Models 2-23
Specification of the Uncertainty 2-26
From Affine to Linear-Fractional Models 2-32
References 2-35
Robustness Analysis
3
Quadratic Lyapunov Functions 3-3
LMI Formulation 3-4
Quadratic Stability 3-6
Maximizing the Quadratic Stability Region 3-8
Decay Rate 3-9
Quadratic $H \infty$ Performance 3-10
Parameter-Dependent Lyapunov Functions 3-12
Stability Analysis 3-14
μ Analysis 3-17
Structured Singular Value 3-17
Robust Stability Analysis 3-19
Robust Performance 3-21
The Popov Criterion 3-24
Real Parameter Uncertainty 3-25
Example 3-28
References 3-32
State-Feedback Synthesis
4
Multi-Objective State-Feedback 4-3
Pole Placement in LMI Regions 4-5
LMI Formulation 4-7
Extension to the Multi-Model Case 4-9
The Function msfsyn 4-11
Design Example 4-13
References 4-18
Synthesis of $\mathbf{H} \infty$ Controllers
5
$H \infty$ Control 5-3
Riccati- and LMI-Based Approaches 5-7
$H \infty$ Synthesis 5-10
Validation of the Closed-Loop System 5-13
Multi-Objective $H \infty$ Synthesis 5-15
LMI Formulation 5-16
The Function hinfmix 5-20
Loop-Shaping Design with hinfmix 5-20
References 5-22
Loop Shaping
6
The Loop-Shaping Methodology 6-2
The Loop-Shaping Methodology 6-3
Design Example 6-5
Specification of the Shaping Filters 6-10
Nonproper Filters and sderiv 6-12
Specification of the Control Structure 6-14
Controller Synthesis and Validation 6-16
Practical Considerations 6-18
Loop Shaping with Regional Pole Placement 6-19
References 6-24
Robust Gain-Scheduled Controllers
7
Gain-Scheduled Control 7-3
Synthesis of Gain-Scheduled $H \bullet$ Controllers 7-7
Simulation of Gain-Scheduled Control Systems 7-9
Design Example 7-10
References 7-15
The LMI Lab8
Background and Terminology 8-3
Overview of the LMI Lab 8-6
Specifying a System of LMIs 8-8
A Simple Example 8-9
setlmis and getlmis 8-11
lmivar 8-11
lmiterm 8-13
The LMI Editor lmiedit 8-16
How It All Works 8-18
Retrieving Information 8-21
lmiinfo 8-21
lminbr and matnbr 8-21
LMI Solvers 8-22
From Decision to Matrix Variables and Vice Versa 8-28
Validating Results 8-29
Modifying a System of LMIs 8-30
dellmi 8-30
dellmi $8-30$
setmvar 8-31
Advanced Topics 8-33
Structured Matrix Variables 8-33
Complex-Valued LMIs $8-35$
Specifying $c^{T} x$ Objectives for mincx 8-38
Feasibility Radius 8-39
Well-Posedness Issues 8-40
Semi-Definite $\mathrm{B}(\mathrm{x})$ in gevp Problems 8-41
Efficiency and Complexity Issues 8-41
Solving M + PTXQ + QTXTP < 0 8-42
References 8-44
Command Reference
9
List of Functions 9-3
H ∞ Control and Loop Shaping 9-6
LMI Lab: Specifying and Solving LMIs 9-7
LMI Lab: Additional Facilities 9-8

Preface

About the Authors

Dr. Pascal Gahinet is a reserach fellow at INRIA Rocquencourt, France. His research interests include robust control theory, linear matrix inequalities, numerical linear algebra, and numerical software for control.

Prof. Arkadi Nemirovski is with the Faculty of Industrial Engineering and Management at Technion, Haifa, Israel. His research interests include convex optimization, complexity theory, and non-parametric statistics.
Prof. Alan J. Laub is with the Electrical and Computer Engineering Department of the University of California at Santa Barbara, USA. His research interests are in numerical analysis, mathematical software, scientific computation, computer-aided control system design, and linear and large-scale control and filtering theory.

Mahmoud Chilali is completing his Ph.D. at INRIA Rocquencourt, France. His thesis is on the theory and applications of linear matrix inequalities in control.

Acknowledgments

The authors wish to express their gratitude to all colleagues who directly or indirectly contributed to the making of the LMI Control Toolbox. Special thanks to Pierre Apkarian, Gregory Becker, Hiroyuki Kajiwara, and Anca Ignat for their help and contribution. Many thanks also to those who tested and helped refine the software, including Bobby Bodenheimer, Markus Brandstetter, Eric Feron, K.C. Goh, Anders Helmersson, Ted Iwasaki, Jianbo Lu, Roy Lurie, Jason Ly, John Morris, Ravi Prasanth, Michael Safonov, Carsten Scherer, Andy Sparks, Mario Rotea, Matthew Lamont Tyler, Jim Tung, and John Wen. Apologies, finally, to those we may have omitted.

The work of Pascal Gahinet was supported in part by INRIA.

Introduction

Linear Matrix Inequalities 1-2
Toolbox Features 1-3
LMIs and LMI Problems 1-4
The Three Generic LMI Problems 1-5
Further Mathematical Background 1-9
References 1-10

Linear Matrix Inequalities

Linear Matrix Inequalities (LMIs) and LMI techniques have emerged as powerful design tools in areas ranging from control engineering to system identification and structural design. Three factors make LMI techniques appealing:

- A variety of design specifications and constraints can be expressed as LMIs.
- Once formulated in terms of LMIs, a problem can be solved exactly by efficient convex optimization algorithms (the "LMI solvers").
- While most problems with multiple constraints or objectives lack analytical solutions in terms of matrix equations, they often remain tractable in the LMI framework. This makes LMI-based design a valuable alternative to classical "analytical" methods.

See [9] for a good introduction to LMI concepts. The LMI Control Toolbox is designed as an easy and progressive gateway to the new and fast-growing field of LMIs:

- For users mainly interested in applying LMI techniques to control design, the LMI Control Toolbox features a variety of high-level tools for the analysis and design of multivariable feedback loops (see Chapters 2 through 7).
- For users who occasionally need to solve LMI problems, the "LMI Editor" and the tutorial introduction to LMI concepts and LMI solvers provide for quick and easy problem solving.
- For more experienced LMI users, the "LMI Lab" (Chapter 8) offers a rich, flexible, and fully programmable environment to develop customized LMI-based tools.

The LMI Control Toolbox implements state-of-the-art interior-point LMI solvers. While these solvers are significantly faster than classical convex optimization algorithms, it should be kept in mind that the complexity of LMI computations remains higher than that of solving, say, a Riccati equation. For instance, problems with a thousand design variables typically take over an hour on today's workstations. However, research on LMI optimization is still very active and substantial speed-ups can be expected in the future. Thanks to its efficient "structured" representation of LMIs, the LMI Control Toolbox is geared to making the most out of such improvements.

Toolbox Features

The LMI Control Toolbox serves two purposes:

- Provide state-of-the-art tools for the LMI-based analysis and design of robust control systems
- Offer a flexible and user-friendly environment to specify and solve general LMI problems (the LMI Lab)

The control design tools can be used without a priori knowledge about LMIs or LMI solvers. These are dedicated tools covering the following applications of LMI techniques:

- Specification and manipulation of uncertain dynamical systems (linear-time invariant, polytopic, parameter-dependent, etc.)
- Robustness analysis. Various measures of robust stability and performance are implemented, including quadratic stability, techniques based on parameter-dependent Lyapunov functions, analysis, and Popov analysis.
- Multi-model/multi-objective state-feedback design
- Synthesis of output-feedback H_{∞} controllers via Riccati- and LMI-based techniques, including mixed H_{2} / H_{∞} synthesis with regional pole placement constraints
- Loop-shaping design
- Synthesis of robust gain-scheduled controllers for time-varying parameter-dependent systems

For users interested in developing their own applications, the LMI Lab provides a general-purpose and fully programmable environment to specify and solve virtually any LMI problem. Note that the scope of this facility is by no means restricted to control-oriented applications.

LMIs and LMI Problems

A linear matrix inequality (LMI) is any constraint of the form

$$
\begin{equation*}
A(x):=A_{0}+x_{1} A_{1}+\ldots+x_{N} A_{N}<0 \tag{1-1}
\end{equation*}
$$

where

- $x=\left(x_{1}, \ldots, x_{N}\right)$ is a vector of unknown scalars (the decision or optimization variables)
- A_{0}, \ldots, A_{N} are given symmetric matrices
- < 0 stands for "negative definite," i.e., the largest eigenvalue of $A(x)$ is negative

Note that the constraints $A(x)>0$ and $A(x)<B(x)$ are special cases of (1-1) since they can be rewritten as $-A(x)<0$ and $A(x)-B(x)<0$, respectively.

The LMI (1-1) is a convex constraint on x since $A(y)<0$ and $A(z)<0$ imply that $A\left(\frac{y+z}{2}\right)<0$. As a result,

- Its solution set, called the feasible set, is a convex subset of \mathbf{R}^{N}
- Finding a solution x to (1-1), if any, is a convex optimization problem.

Convexity has an important consequence: even though (1-1) has no analytical solution in general, it can be solved numerically with guarantees of finding a solution when one exists. Note that a system of LMI constraints can be regarded as a single LMI since

$$
\left\{\begin{array}{l}
A_{1}(x)<0 \\
\quad \vdots \quad \text { is equivalent to } A(x):=\operatorname{diag}\left(A_{1}(x), \ldots, A_{K}(x)\right)<0 \\
A_{K}(x)<0
\end{array}\right.
$$

where $\operatorname{diag}\left(A_{1}(x), \ldots, A_{K}(x)\right)$ denotes the block-diagonal matrix with $A_{1}(x), \ldots, A_{K}(x)$ on its diagonal. Hence multiple LMI constraints can be imposed on the vector of decision variables x without destroying convexity.

In most control applications, LMIs do not naturally arise in the canonical form (1-1), but rather in the form

$$
L\left(X_{1}, \ldots, X_{n}\right)<R\left(X_{1}, \ldots, X_{n}\right)
$$

where $L(\cdot)$ and $R(\cdot)$ are affine functions of some structured matrix variables X_{1}, \ldots, X_{n}. A simple example is the Lyapunov inequality

$$
\begin{equation*}
A^{T} X+X A<0 \tag{1-2}
\end{equation*}
$$

where the unknown X is a symmetric matrix. Defining x_{1}, \ldots, x_{N} as the independent scalar entries of X, this LMI could be rewritten in the form (1-1). Yet it is more convenient and efficient to describe it in its natural form (1-2), which is the approach taken in the LMI Lab.

The Three Generic LMI Problems

Finding a solution x to the LMI system

$$
\begin{equation*}
A(x)<0 \tag{1-3}
\end{equation*}
$$

is called the feasibility problem. Minimizing a convex objective under LMI constraints is also a convex problem. In particular, the linear objective minimization problem

$$
\begin{equation*}
\text { Minimize } c^{T} x \text { subject to } A(x)<0 \tag{1-4}
\end{equation*}
$$

plays an important role in LMI-based design. Finally, the generalized eigenvalue minimization problem

$$
\text { Minimize } \lambda \text { subject to }\left\{\begin{array}{l}
A(x)<\lambda B(x) \tag{1-5}\\
B(x)>0 \\
C(x)<0
\end{array}\right.
$$

is quasi-convex and can be solved by similar techniques. It owes its name to the fact that is related to the largest generalized eigenvalue of the pencil $(A(x), B(x))$.

Many control problems and design specifications have LMI formulations [9]. This is especially true for Lyapunov-based analysis and design, but also for
optimal LQG control, H_{∞} control, covariance control, etc. Further applications of LMIs arise in estimation, identification, optimal design, structural design [6, 7], matrix scaling problems, and so on. The main strength of LMI formulations is the ability to combine various design constraints or objectives in a numerically tractable manner.

A nonexhaustive list of problems addressed by LMI techniques includes the following:

- Robust stability of systems with LTI uncertainty (μ-analysis) [24, 21, 27]
- Robust stability in the face of sector-bounded nonlinearities (Popov criterion) [22, 28, 13, 16]
- Quadratic stability of differential inclusions [15, 8]
- Lyapunov stability of parameter-dependent systems [12]
- Input/state/output properties of LTI systems (invariant ellipsoids, decay rate, etc.) [9]
- Multi-model/multi-objective state feedback design [4, 17, 3, 9, 10]
- Robust pole placement
- Optimal LQG control [9]
- Robust H_{∞} control [11, 14]
- Multi-objective H_{∞} synthesis [17, 23, 10, 18]
- Design of robust gain-scheduled controllers [5, 2]
- Control of stochastic systems [9]
- Weighted interpolation problems [9]

To hint at the principles underlying LMI design, let's review the LMI formulations of a few typical design objectives.

Stability. the stability of the dynamical system

$$
\dot{x}=A x
$$

is equivalent to the feasibility of

$$
\text { Find } P=P^{T} \text { such that } A^{T} P+P A<0, P>I
$$

This can be generalized to linear differential inclusions (LDI)

$$
\dot{x}=A(t) x
$$

where $A(t)$ varies in the convex envelope of a set of LTI models:

$$
A(t) \in \operatorname{Co}\left\{A_{1}, \ldots, A_{n}\right\}=\left\{\begin{array}{cc}
n & N \\
\left.\sum_{i=1}^{n} a_{i} A_{i}: a_{i} \geq 0, \sum_{i=1} a_{i}=1\right\}
\end{array}\right\}
$$

A sufficient condition for the asymptotic stability of this LDI is the feasibility of Find $P=P^{T}$ such that $A_{i}^{T} P+P A_{i}<0, P>I$.

RMS gain . the random-mean-squares (RMS) gain of a stable LTI system

$$
\left\{\begin{array}{l}
\dot{x}=A x+B u \\
y=C x+D u
\end{array}\right.
$$

is the largest input/output gain over all bounded inputs $u(t)$. This gain is the global minimum of the following linear objective minimization problem [1, 26 , 25].
Minimize γ over $X=X^{T}$ and γ such that

$$
\begin{aligned}
\left(\begin{array}{ccc}
A^{T} X+X A & X B & C^{T} \\
B^{T} X & -\gamma I & D^{T} \\
C & D & -\gamma I
\end{array}\right) & <0 \\
& X>0
\end{aligned}
$$

LQG performance . for a stable LTI system

$$
G\left\{\begin{array}{l}
\dot{x}=A x+B w \\
y=C x
\end{array}\right.
$$

where w is a white noise disturbance with unit covariance, the LQG or H_{2} performance $\|G\|_{2}$ is defined by

$$
\begin{aligned}
\|G\|_{2}^{2}: & =\lim _{T \rightarrow \infty} E\left\{\frac{1}{T} \int_{0}^{T} y^{T}(t) y(t) d t\right\} \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} G^{H}(j \omega) G(j \omega) d \omega
\end{aligned}
$$

It can be shown that

$$
\|G\|_{2}^{2}=\inf \left\{\text { Trace }\left(C P C^{T}\right): A P+P A^{T}+B B^{T}<0\right\}
$$

Hence $\|G\|_{2}^{2}$ is the global minimum of the LMI problem
Minimize Trace (Q) over the symmetric matrices P, Q such that

$$
\begin{aligned}
A P+P A^{T}+B B^{T} & <0 \\
\left(\begin{array}{cc}
Q & C P \\
P C^{T} & P
\end{array}\right) & >0
\end{aligned}
$$

Again this is a linear objective minimization problem since the objective Trace (Q) is linear in the decision variables (free entries of P, Q).

Further Mathematical Background

Efficient interior-point algorithms are now available to solve the three generic LMI problems (1-3)-(1-5) defined in "The Three Generic LMI Problems" on page 1-5. These algorithms have a polynomial-time complexity. That is, the number $N(\varepsilon)$ of flops needed to compute an ε-accurate solution is bounded by

$$
N(\varepsilon) \text { ð } M N^{3} \log (V / \varepsilon)
$$

where M is the total row size of the LMI system, N is the total number of scalar decision variables, and V is a data-dependent scaling factor. The LMI Control Toolbox implements the Projective Algorithm of Nesterov and Nemirovski [20, 19]. In addition to its polynomial-time complexity, this algorithm does not require an initial feasible point for the linear objective minimization problem (1-4) or the generalized eigenvalue minimization problem (1-5).

Some LMI problems are formulated in terms of inequalities rather than strict inequalities. For instance, a variant of (1-4) is

Minimize $c^{T} x$ subject to $A(x)$ ð 0.
While this distinction is immaterial in general, it matters when $A(x)$ can be made negative semi-definite but not negative definite. A simple example is

$$
\text { Minimize } c^{T} x \text { subject to }\left(\begin{array}{cc}
x & x \tag{1-6}\\
x & x
\end{array}\right) \geq 0
$$

Such problems cannot be handled directly by interior-point methods which require strict feasibility of the LMI constraints. A well-posed reformulation of (1-6) would be

Minimize $c^{T} x$ subject to x Š 0 .
Keeping this subtlety in mind, we always use strict inequalities in this manual.

References

[1] Anderson, B.D.O, and S. Vongpanitlerd, Network Analysis, Prentice-Hall, Englewood Cliffs, 1973.
[2] Apkarian, P., P. Gahinet, and G. Becker, "Self-Scheduled H_{∞} Control of Linear Parameter-Varying Systems," Proc. Amer. Contr. Conf., 1994, pp. 856-860.
[3] Bambang, R., E. Shimemura, and K. Uchida, "Mixed H_{2} / H_{∞} Control with Pole Placement," State-Feedback Case," Proc. Amer. Contr. Conf., 1993, pp. 2777-2779.
[4] Barmish, B.R., "Stabilization of Uncertain Systems via Linear Control," IEEE Trans. Aut. Contr., AC-28 (1983), pp. 848-850.
[5] Becker, G., Packard, P., "Robust Performance of Linear-Parametrically Varying Systems Using Parametrically-Dependent Linear Feedback," Systems and Control Letters, 23 (1994), pp. 205-215.
[6] Bendsoe, M.P., A. Ben-Tal, and J. Zowe, "Optimization Methods for Truss Geometry and Topology Design," to appear in Structural Optimization.
[7] Ben-Tal, A., and A. Nemirovski, "Potential Reduction Polynomial-Time Method for Truss Topology Design," to appear in SIAM J. Contr. Opt.
[8] Boyd, S., and Q. Yang, "Structured and Simultaneous Lyapunov Functions for System Stability Problems," Int. J. Contr., 49 (1989), pp. 2215-2240.
[9] Boyd, S., L. El Ghaoui, E. Feron, V. Balakrishnan, Linear Matrix Inequalities in Systems and Control Theory, SIAM books, Philadelphia, 1994.
[10] Chilali, M., and P. Gahinet, " H_{∞} Design with Pole Placement Constraints: an LMI Approach," to appear in IEEE Trans. Aut. Contr. Also in Proc. Conf. Dec. Contr., 1994, pp. 553-558.
[11] Gahinet, P., and P. Apkarian, "A Linear Matrix Inequality Approach to H_{∞} Control," Int. J. Robust and Nonlinear Contr., 4 (1994), pp. 421-448.
[12] Gahinet, P., P. Apkarian, and M. Chilali, "Affine Parameter-Dependent Lyapunov Functions for Real Parametric Uncertainty," Proc. Conf. Dec. Contr., 1994, pp. 2026-2031.
[13] Haddad, W.M. and D.S. Berstein,"Parameter-Dependent Lyapunov Functions, Constant Real Parameter Uncertainty, and the Popov Criterion in Robust Analysis and Synthesis: Part 1 and 2," Proc. Conf. Dec. Contr., 1991, pp. 2274-2279 and 2632-2633.
[14] Iwasaki, T., and R.E. Skelton, "All Controllers for the General H_{∞} Control Problem: LMI Existence Conditions and State-Space Formulas," Automatica, 30 (1994), pp. 1307-1317.
[15] Horisberger, H.P., and P.R. Belanger, "Regulators for Linear Time-Varying Plants with Uncertain Parameters," IEEE Trans. Aut. Contr., AC-21 (1976), pp. 705-708.
[16] How, J.P., and S.R. Hall, "Connection between the Popov Stability Criterion and Bounds for Real Parameter Uncertainty," Proc. Amer. Contr. Conf., 1993, pp. 1084-1089.
[17] Khargonekar, P.P., and M.A. Rotea,"Mixed H_{2} / H_{∞} Control: a Convex Optimization Approach," IEEE Trans. Aut. Contr., 39 (1991), pp. 824-837.
[18] Masubuchi, I., A. Ohara, and N. Suda, "LMI-Based Controller Synthesis: A Unified Formulation and Solution," submitted to Int. J. Robust and Nonlinear Contr., 1994.
[19] Nemirovski, A., and P. Gahinet, "The Projective Method for Solving Linear Matrix Inequalities," Proc. Amer. Contr. Conf., 1994, pp. 840-844.
[20] Nesterov, Yu, and A. Nemirovski, Interior Point Polynomial Methods in Convex Programming: Theory and Applications, SIAM Books, Philadelphia, 1994.
[21] Packard, A., and J.C. Doyle, "The Complex Structured Singular Value," Automatica, 29 (1994), pp. 71-109.
[22] Popov, V.M., "Absolute Stability of Nonlinear Systems of Automatic Control," Automation and Remote Control, 22 (1962), pp. 857-875.
[23] Scherer, C., "Mixed $H_{2} H_{\infty}$ Control," to appear in Trends in Control: A European Perspective, volume of the special contributions to the ECC 1995.
[24] Stein, G. and J.C. Doyle, "Beyond Singular Values and Loop Shapes," J. Guidance, 14 (1991), pp. 5-16.
[25] Vidyasagar, M., Nonlinear System Analysis, Prentice-Hall, Englewood Cliffs, 1992.
[26] Willems, J.C., "Least-Squares Stationary Optimal Control and the Algebraic Riccati Equation," IEEE Trans. Aut. Contr., AC-16 (1971), pp. 621-634.
[27] Young, P. M., M. P. Newlin, and J. C. Doyle, "Let's Get Real," in Robust Control Theory, Springer Verlag, 1994, pp. 143-174.
[28] Zames, G., "On the Input-Output Stability of Time-Varying Nonlinear Feedback Systems, Part I and II," IEEE Trans. Aut. Contr., AC-11 (1966), pp. 228-238 and 465-476.

Uncertain Dynamical Systems

Linear Time-Invariant Systems 2-3
SYSTEM Matrix 2-3
Time and Frequency Response Plots 2-6
Interconnections of Linear Systems 2-9
Model Uncertainty 2-12
Uncertain State-Space Models 2-14
Polytopic Models 2-14
Affine Parameter-Dependent Models 2-15
Quantification of Parameter Uncertainty 2-17
Simulation of Parameter-Dependent Systems 2-19
From Affine to Polytopic Models 2-20
Example 2-21
Linear-Fractional Models of Uncertainty 2-23
How to Derive Such Models 2-23
Specification of the Uncertainty 2-26
From Affine to Linear-Fractional Models 2-32
References 2-35

The LMI Control Toolbox offers a variety of tools to facilitate the description and manipulation of uncertain dynamical systems. These include functions to:

- Manipulate the state-space realization of linear time-invariant (LTI) systems as a single SYSTEM matrix
- Form interconnections of linear systems
- Specify linear systems with uncertain state-space matrices (polytopic differential inclusions, systems with uncertain or time-varying physical parameters, etc.)
- Describe linear-fractional models of uncertainty

The next sections provide a tutorial introduction to uncertain dynamical systems and an overview of these facilities.

Linear Time-Invariant Systems

The LMI Control Toolbox provides streamlined tools to manipulate state-space representations of linear time-invariant (LTI) systems. These tools handle general LTI models of the form

$$
\begin{aligned}
& E \frac{d x}{d t}=A x(t)+B u(t) \\
& y(t)=C x(t)+D u(t)
\end{aligned}
$$

where A, B, C, D, E are real matrices and E is invertible, as well as their discrete-time counterpart

$$
\begin{gathered}
E x_{k+1}=A x_{k}+B u_{k} \\
y_{k}=C x_{k}+D u_{k}
\end{gathered}
$$

Recall that the vectors $x(t), u(t), y(t)$ denote the state, input, and output trajectories. Similarly, x_{k}, u_{k}, y_{k} denote the values of the state, input, and output vectors at the sample time k.
The "descriptor" formulation ($E \neq I$) proves useful when specifying parameter-dependent systems (see "Affine Parameter-Dependent Models" on page 2-15) and also avoids inverting E when this inversion is poorly conditioned. Moreover, many dynamical systems are naturally written in descriptor form. For instance, the second-order system

$$
m \ddot{x}+f \dot{x}+k x=u, \quad y=x .
$$

admits the state-space representation

$$
\left.\begin{array}{l}
\quad\left(\begin{array}{cc}
1 & 0 \\
0 & m
\end{array}\right) \frac{d X}{d t}=\left(\begin{array}{cc}
0 & 1 \\
-k & -f
\end{array}\right) X+\binom{0}{1} u, \quad y=(1,0) X \\
\text { where } X(t)
\end{array}\right)=\binom{x(t)}{\dot{x}(t)} .
$$

SYSTEM Marrix

For convenience, the state-space realization of LTI systems is stored as a single MATLAB matrix called a SYSTEM matrix. Specifically, a continuous- or
discrete-time LTI system with state-space matrices A, B, C, D, E is represented by the structured matrix

$$
\left[\begin{array}{cc|c}
A+j(E-I) & B & n \\
0 \\
C & D & \vdots \\
& 0 \\
\hline 0 & -\operatorname{Inf}
\end{array}\right]
$$

where $j=\sqrt{-1}$. The upper right entry n corresponds to the number of states (i.e., $A \in \mathbf{R}^{\mathrm{n} \times \mathrm{n}}$) while the entry Inf is used to differentiate SYSTEM matrices from regular matrices. This data structure is similar to that used in the μ Analysis and Synthesis Toolbox.
The functions ltisys and ltiss create SYSTEM matrices and extract statespace data from them. For instance,

```
sys = ltisys( 1,1,1,0)
```

specifies the LTI system

$$
\dot{x}=-x+u, \quad y=x
$$

To retrieve the values of A, B, C, D from the SYSTEM matrix sys, type

```
[a,b,c,d] = ltiss(sys)
```

For single-input/single-output (SISO) systems, the function ltitf returns the numerator/denominator representation of the transfer function

$$
G(s)=D+C(s E-A)^{-1} B=\frac{n(s)}{d(s)}
$$

Conversely, the command

```
sys = ltisys('tf',n,d)
```

returns a state-space realization of the SISO transfer function $n(s) / d(s)$ in SYSTEM format. Here n and d are the vector representation of $n(s)$ and $d(s)$ (type help poly for details).
The number of states, inputs, and outputs of a linear system are retrieved from the SYSTEM matrix with sinfo:

```
sinfo(sys)
System with 1 state(s), 1 input(s), and 1 output(s)
```

Similarly, the poles of the system are given by spol:

```
spol(sys)
ans =
    1
```

The function ssub selects particular inputs and outputs of a system and returns the corresponding subsystem. For instance, if G has two inputs and three outputs, the subsystem mapping the first input to the second and third outputs is given by

```
ssub(g,1,2:3)
```

The function sinv computes the inverse $H(s)=G(s)^{-1}$ of a system $G(s)$ with square invertible D matrix:

$$
h=\operatorname{sinv}(g)
$$

Finally, the state-space realization of an LTI system can be "balanced" with sbalanc. This function seeks a diagonal scaling similarity that reduces the norms of A, B, C.

Time and Frequency Response Plots

Time and frequency responses of linear systems are plotted directly from the SYSTEM matrix with the function splot. For the sake of illustration, consider the second-order system

$$
m \ddot{x}+f \dot{x}+k x=u, \quad y=x
$$

with $m=2, f=0.01$, and $k=0.5$. This system is specified in descriptor form by

```
sys = ltisys([0 1, 0.5 0.01],[0,1],[1 0],0,[1 0,0 2])
```

the last input argument being the E matrix. To plot its Bode diagram, type

```
splot(sys,'bo')
```

The second argument is the string consisting of the first two letters of "bode." This command produces the plot of Figure 2-1. A third argument can be used to adjust the frequency range. For instance,

```
splot(sys,'bo',logspace( 1,1,50))
```

displays the Bode plot of Figure 2-2 instead.

Figure 2-1: splot (sys,'bo')

Figure 2-2: splot (sys,'bo',logspace (-1,1,50))
To draw the singular value plot of this second-order system, type splot(sys,'sv').

For a system with transfer function $G(s)=D+C(s E-A)^{-1} B$, the singular value plot consists of the curves

$$
\left(\omega, \sigma_{i}(G(j \omega))\right)
$$

where σ_{i} denotes the i-th singular value of a matrix M in the order

$$
\sigma_{1}(M) \text { Š } \sigma_{2}(M) \check{\mathrm{S}} \ldots \text { Š } \sigma_{p}(M) .
$$

Similarly, the step and impulse responses of this system are plotted by splot(sys,'st') and splot(sys, 'im'), respectively. See the "Command Reference" chapter for a complete list of available diagrams.
The function splot is also applicable to discrete-time systems. For such systems, the sampling period T must be specified to plot frequency responses. For instance, the Bode plot of the system

$$
\left\{\begin{array}{l}
x_{k+1}=0.1 x_{k}+0.2 u_{k} \\
y_{k}=-x_{k}
\end{array}\right.
$$

with sampling period $t=0.01 \mathrm{~s}$ is drawn by
splot(ltisys(0.1,0.2, 1),0.01,'bo')

Interconnections of Linear Systems

Tools are provided to form series, parallel, and simple feedback interconnections of LTI systems. More complex interconnections can be built either incrementally with these basic facilities or directly with sconnect (see"Polytopic Models" on page 2-14 for details). The interconnection functions work on the SYSTEM matrix representation of dynamical systems and their names start with an s. Note that most of these functions are also applicable to polytopic or parameter- dependent models (see "Polytopic Models" on page 2-14).
Series and parallel interconnections are performed by sadd and smult. In terms of transfer functions,

```
sadd(g1,g2)
```

returns the system with transfer function $G_{1}(s)+G_{2}(s)$ while

```
smult(g1,g2)
```

returns the system with transfer function $G_{2}(s) G_{1}(s)$. Both functions take up to ten input arguments, at most one of which can be a parameter-dependent system. Similarly, the command

```
sdiag(g1,g2)
```

appends (concatenates) the systems G_{1} and G_{2} and returns the system with transfer function

$$
G(s)=\left(\begin{array}{cc}
G_{1}(s) & 0 \\
0 & G_{2}(s)
\end{array}\right)
$$

This corresponds to combining the input/output relations

$$
y_{1}=G_{1}(s) u_{1}, \quad y_{2}=G_{2}(s) u_{2}
$$

into the single relation

$$
\binom{y_{1}}{y_{2}}=G(s)\binom{u_{1}}{u_{2}}
$$

Finally, the functions sloop and slft form basic feedback interconnections. The function sloop computes the closed-loop mapping between r and y in the loop of Figure 2-3. The result is a state-space realization of the transfer function

$$
\left(I-\varepsilon G_{1} G_{2}\right)^{-1} G_{1}
$$

where $\varepsilon= \pm 1$.

Figure 2-3: sloop

This function is useful to specify simple feedback loops. For instance, the closed-loop system clsys corresponding to the two-degree-of-freedom tracking loop

is derived by setting $G_{1}(s)=G(s) K(s)$ and $G_{2}(s)=1$:

```
clsys = smult(c, sloop(smult(k,g),1))
```

The function slft forms the more general feedback interconnection of Figure 2-4 and returns the closed-loop mapping from $\binom{\omega_{1}}{\omega_{2}}$ to $\binom{z_{1}}{z_{2}}$. To form this interconnection when $u \in \mathbf{R}^{2}$ and $y \in \mathbf{R}^{3}$, the command is
slft(P1,P2,2,3)

The last two arguments dimension u and y. This function is useful to compute linear-fractional interconnections such as those arising in H_{∞} theory and its extensions (see "How to Derive Such Models" on page 2-23).

Figure 2-4: slft

Model Uncertainty

The notion of uncertain dynamical system is central to robust control theory. For control design purposes, the possibly complex behavior of dynamical systems must be approximated by models of relatively low complexity. The gap between such models and the true physical system is called the model uncertainty. Another cause of uncertainty is the imperfect knowledge of some components of the system, or the alteration of their behavior due to changes in operating conditions, aging, etc. Finally, uncertainty also stems from physical parameters whose value is only approximately known or varies in time. Note that model uncertainty should be distinguished from exogenous actions such as disturbances or measurement noise.

The LMI Control Toolbox focuses on the class of dynamical systems that can be approximated by linear models up to some possibly nonlinear and/or time-varying model uncertainty. When deriving the nominal model and estimating the uncertainty, two fundamental principles must be remembered:

- Uncertainty should be small where high performance is desired (tradeoff between performance and robustness). In other words, the linear model should be sufficiently accurate in the control bandwidth.
- The more information you have about the uncertainty (phase, structure, time invariance, etc.), the higher the achievable performance will be.

There are two major classes of uncertainty:

- Dynamical uncertainty, which consists of dynamical components neglected in the linear model as well as of variations in the dynamical behavior during operation. For instance, high-frequency flexible modes, nonlinearities for large inputs, slow time variations, etc.
- Parameter uncertainty, which stems from imperfect knowledge of the physical parameter values, or from variations of these parameters during operation. Examples of physical parameters include stiffness and damping coefficients in mechanical systems, aerodynamical coefficients in flying devices, capacitors and inductors in electric circuits, etc.

Other important characteristics of uncertainty include whether it is linear or nonlinear, and whether it is time invariant or time varying. Model uncertainty is generally a combination of dynamical and parametric uncertainty, and may arise at several different points in the control loop. For instance, there may be
dynamical uncertainty on the system actuators, and parametric uncertainty on some sensor coefficients. Two representations of model uncertainty are used in the LMI Control Toolbox:

- Uncertain state-space models. This representation is relevant for systems described by dynamical equations with uncertain and/or time-varying coefficients.
- Linear-fractional representation of uncertainty. Here the uncertain system is described as an interconnection of known LTI systems with uncertain components called "uncertainty blocks." Each uncertainty block $\Delta_{i}(\cdot)$ represents a family of systems of which only a few characteristics are known. For instance, the only available information about Δ_{i} may be that it is a time-invariant nonlinearity with gain less than 0.01 .

Determinant factors in the choice of representation include the available model (state-space equations, frequency-domain model, etc.) and the analysis or synthesis tool to be used.

Uncertain State-Space Models

Physical models of a system often lead to a state-space description of its dynamical behavior. The resulting state-space equations typically involve physical parameters whose value is only approximately known, as well as approximations of complex and possibly nonlinear phenomena. In other words, the system is described by an uncertain state-space model

$$
E \dot{x}=A x+B u, \quad y=C x+D u
$$

where the state-space matrices A, B, C, D, E depend on uncertain and/or time-varying parameters or vary in some bounded sets of the space of matrices.
Of particular relevance to this toolbox are the classes of polytopic or parameter-dependent models discussed next. We collectively refer to such models as P-systems, "P-" standing for "polytopic or parameter-dependent." P-systems are specified with the function psys and manipulated like ordinary LTI systems except for a few specific restrictions.

Polytopic Models

We call polytopic system a linear time-varying system

$$
\begin{aligned}
E(t) \dot{x} & =A(t) x+B(t) u \\
y & =C(t) x+D(t) u
\end{aligned}
$$

whose SYSTEM matrix $S(t)=\left[\begin{array}{cc}A(t)+j E(t) & B(t) \\ \text { of matrices, i.e., } & D(t)\end{array}\right]$ varies within a fixed polytope

$$
S(t) \in \operatorname{Co}\left\{S_{1}, \ldots, S_{k}\right\}:=\left\{\sum_{i=1}^{k} \alpha_{i} S_{i}: \alpha_{i} \geq 0, \sum_{i=1}^{k} \alpha_{i}=1\right\}
$$

where S_{1}, \ldots, S_{k} are given vertex systems:

$$
S_{1}=\left[\begin{array}{cc}
A_{1}+j E_{1} & B_{1} \tag{2-1}\\
C_{1} & D_{1}
\end{array}\right], \ldots S_{k}=\left[\begin{array}{cc}
A_{k}+j E_{k} & B_{k} \\
C_{k} & D_{k}
\end{array}\right]
$$

In other words, $S(t)$ is a convex combination of the SYSTEM matrices S_{1}, \ldots, S_{k}. The nonnegative numbers $\alpha_{1}, \ldots, \alpha_{k}$ are called the polytopic coordinates of S.

Such models are also called polytopic linear differential inclusions in the literature [3] and arise in many practical situations, including:

- Multimodel representation of a system, each model being derived around particular operating conditions
- Nonlinear systems of the form

$$
\dot{x}=A(x) x+B(x) u, \quad y=C(x) x+D(x) u
$$

- State-space models depending affinely on time-varying parameters (see "From Affine to Polytopic Models" on page 2-20)

A simple example is the system

$$
\dot{x}=(\sin x) x
$$

whose state matrix $A=\sin x$ ranges in the polytope
$\mathrm{A} \in \operatorname{Co}\{-1,1\}=[-1,1]$.
Polytopic systems are specified by the list of their vertex systems, i.e., by the SYSTEM matrices S_{1}, \ldots, S_{k} in (2-1). For instance, a polytopic model taking values in the convex envelope of the three LTI systems s1, s2, s3 is declared by

```
polsys = psys([s1 s2 s3])
```


Affine Parameter-Dependent Models

The equations of physics often involve uncertain or time-varying coefficients. When the system is linear, this naturally gives rise to parameter-dependent models (PDS) of the form

$$
\begin{aligned}
E(p) \dot{x} & =A(p) x+B(p) u \\
y & =C(p) x+\mathrm{D}(p) u
\end{aligned}
$$

where $A(\cdot), \ldots, E(\cdot)$ are known functions of some parameter vector $p=\left(p_{1}, \ldots, p_{n}\right)$. Such models commonly arise from the equations of motion, aerodynamics, circuits, etc.

The LMI Control Toolbox offers various tools to analyze the stability and performance of parameter-dependent systems with an affine dependence on the parameter vector $p=\left(p_{1}, \ldots, p_{n}\right)$. That is, PDSs where

$$
A(p)=A_{0}+p_{1} A_{1}+\ldots+p_{n} A_{n}, B(p)=B_{0}+p_{1} B_{1}+\ldots+p_{n} B_{n},
$$

and so on. Affine parameter-dependent models are well-suited for Lyapunovbased analysis and synthesis and are easily converted to linear-fractional uncertainty models for small-gain-based design (see the nonlinear spring example in "Sector-Bounded Uncertainty" on page 2-30).
With the notation

$$
S(p)=\left(\begin{array}{cc}
A(p)+j E(p) & B(p) \\
C(p) & D(p)
\end{array}\right), \quad S_{i}=\left(\begin{array}{cc}
A_{i}+j E_{i} & B_{i} \\
C_{i} & D_{i}
\end{array}\right)
$$

the affine dependence on p is written more compactly in SYSTEM matrix terms as

$$
S(p)=S_{0}+p_{1} S_{1}+\ldots+p_{n} S_{n}
$$

The system "coefficients" S_{0}, \ldots, S_{n} fully characterize the dependence on the uncertain parameters p_{1}, \ldots, p_{n}. Note that S_{0}, \ldots, S_{n} need not represent meaningful dynamical systems. Only their combination $S(p)$ is a relevant description of the problem.

Affine parameter-dependent systems are specified with psys by providing

- A description of the parameter vector p in terms of bounds on the parameter values and rates of variation
- The list of SYSTEM matrix coefficients S_{0}, \ldots, S_{n}

For instance, the system

$$
S(p)=S_{0}+p_{1} S_{1}+p_{2} S_{2}
$$

is defined by

```
s0 = ltisys(a0,b0,c0,dO,e0)
s1 = ltisys(a1,b1,c1,d1,e1)
s2 = ltisys(a2,b2,c2,d2,e2)
affsys = psys(pv, [s0 s1 s2])
```

where $p v$ is the parameter description returned by pvec (see next subsection for details). The output affsys is a structured matrix storing all relevant data.

Important: By default, ltisys sets the E matrix to the identity. Omitting the arguments e0, e1, e2 altogether results in setting $E(p)=I+\left(p_{1}+p_{2}\right) I$.

To specify an affine PDS with a parameter-independent E matrix (e.g., $E(p)=I$), you must explicitly set $E_{1}=E_{2}=0$ by typing

```
s0 = ltisys(a0,b0,c0,d0)
```

s1 = ltisys(a1,b1, c1, d1,0)
s2 = ltisys(a2,b2,c2, d2,0)

Quantification of Parameter Uncertainty

Parameter uncertainty is quantified by the range of parameter values and possibly the rates of parameter variation. This is done with the function pvec. The characteristics of parameter vectors defined with pvec are retrieved with pvinfo.
The parameter uncertainty range can be described as a box in the parameter space. This corresponds to cases where each uncertain or time-varying parameter p_{i} ranges between two empirically determined extremal values \underline{p}_{i} and \bar{p}_{i} :

$$
\begin{equation*}
p_{i} \in\left[p_{i}, \bar{p}_{i}\right] . \tag{2-1}
\end{equation*}
$$

If $p=\left(p_{1}, \ldots, p_{n}\right)$ is the vector of all uncertain parameters, (2-2) delimits a hyperrectangle of the parameter space \mathbf{R}^{n} called the parameter box. Consider the example of an electrical circuit with uncertain resistor ρ and capacitor c ranging in

$$
\rho \in[600,1000] \quad c \in[1,5]
$$

The corresponding parameter vector $p=(\rho, c)$ takes values in the box drawn in Figure $2-5$. This uncertainty range is specified by the commands:

```
range = [600 1000,1 5]
p = pvec('box',range)
```

The i-th row of the matrix range lists the lower and upper bounds on p_{i}.

Similarly, bounds on the rate of variation \dot{p}_{i} of $p_{i}(t)$ are specified by adding a third argument rate to the calling list of pvec. For instance, the constraints

$$
0.1 \leq \dot{\rho}(t) \leq 1, \quad|\dot{c}(t)| \leq 0.001
$$

are incorporated by

```
rate = [0.1 1, 0.001 0.001]
p = pvec('box',range,rate)
```

All parameters are assumed to be time-invariant when rate is omitted. Slowly varying parameters can be specified in this manner. In general, robustness against fast parameter variations is more stringent than robustness against constant but uncertain parameters.

Figure 2-5: Parameter box
Alternatively, uncertain parameter vectors can be specified as ranging in a polytopic of the parameter space \mathbf{R}^{n} like the one drawn in Figure 2-6 for $n=2$. This polytope is characterized by the three vertices:

$$
\Pi_{1}=(1,4), \quad \Pi_{2}=(3,8), \quad \Pi_{3}=(10,1) .
$$

An uncertain parameter vector p with this range of values is defined by

```
pi1=[1,4], pi2=[3,8], pi3=[10,1]
p = pvec('pol',[pi1,pi2,pi3])
```

The string 'pol ' indicates that the parameter range is defined as a polytope.

Figure 2-6: Polytopic parameter range

Simulation of Parameter-Dependent Systems

The function pdsimul simulates the time response of affine parameterdependent systems along given parameter trajectories. The parameter vector $p(t)$ is required to range in a box (type 'box' of pvec). The parameter trajectory is defined by a function $p=$ fun(t) returning the value of p at time t. For instance,

```
pdsimul(pds,'traj')
```

plots the step response of a single-input parameter-dependent system pds along the parameter trajectory defined in traj.m. To obtain other time responses, specify an input signal as in

```
pdsimul(pds,'traj',1,'sin')
```

This command plots the response to a sine wave between $t=0$ and $t=1 \mathrm{~s}$. Multi-input multi-output (MIMO) systems are simulated similarly by specifying an appropriate input function.

From Affine to Polytopic Models

Affine parameter-dependent models

$$
S(p)=\left(\begin{array}{cc}
A(p)+j E(p) & B(p) \\
C(p) & D(p)
\end{array}\right)
$$

are readily converted to polytopic ones. Suppose for instance that each parameter p_{i} ranges in some interval $\left[p_{i}, \bar{p}_{i}\right]$. The parameter vector $p=\left(p_{1}, \ldots, p_{n}\right)$ then takes values in a parameter box with 2^{n} corners Π_{1}, Π_{2}, \ldots If the function $S(p)$ is affine in p, it maps this parameter box to some polytope of SYSTEM matrices. More precisely, this polytope is the convex envelope of the images $S\left(\Pi_{1}\right), S\left(\Pi_{2}\right), \ldots$ of the parameter box corners Π_{1}, Π_{2}, \ldots as illustrated by the figure below.

Figure 2-7: Mapping the parameter box to a polytope of systems
Given an affine parameter-dependent system, the function aff2pol performs this mapping and returns an equivalent polytopic model. The syntax is
polsys = aff2pol(affsys)
where affsys is the affine model. The resulting polytopic model polsys consists of the instances of affsys at the vertices of the parameter range.

Example

We conclude with an example illustrating the manipulation of polytopic and parameter-dependent models in the LMI Control Toolbox.

Example 2.1. Consider a simple electrical circuit with equation

$$
L \frac{d^{2} i}{d t}+R \frac{d i}{d t}+C i=V
$$

where the inductance L, the resistor R, and the capacitor C are uncertain parameters ranging in

$$
L \in[10,20], \quad R \in[1,2], \quad C \in[100,150]
$$

A state-space representation of its undriven response is

$$
E(L, R, C) \dot{x}=A(L, R, C) x
$$

where $x^{T}=\left(i, \frac{d i}{d t}\right)$ and

$$
\begin{aligned}
& A(L, R, C)=\left(\begin{array}{cc}
0 & 1 \\
-R & -C
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)+L \times 0+R\left(\begin{array}{cc}
0 & 0 \\
-1 & 0
\end{array}\right)+C\left(\begin{array}{cc}
0 & 0 \\
0 & -1
\end{array}\right) \\
& E(L, R, C)=\left(\begin{array}{ll}
1 & 0 \\
0 & L
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+L\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)+R \times 0+C \times 0 .
\end{aligned}
$$

This affine system is specified with psys as follows:

```
aO = [0 1;0 0]; e0 = [1 0;0 0]; s0 = ltisys(a0,eO)
aL = zeros(2); eL = [0 0;0 1]; sL = ltisys(aL,eL)
aR = [0 0; 1 0]; sR = ltisys(aR,0)
aC = [0 0;0 1]; sC = ltisys(aC,0)
pv=pvec('box',[10 20;1 2;100 150])
pds = psys(pv,[s0 sL sR sC])
```

The first SYSTEM matrix s0 contains the state-space data for $L=R=C=0$ while sL , sR, sC define the coefficient matrices of L, R, C. The range of parameter values is specified by the pvec command.
The results can be checked with psinfo and pvinfo:

```
psinfo(pds)
Affine parameter-dependent system with 3 parameters (4 systems)
    Each system has 2 state(s), 0 input(s), and 0 output(s)
pvinfo(pv)
Vector of 3 parameters ranging in a box
```

The system can also be evaluated for given values of L, R, C :

```
sys = psinfo(pds,'eval',[15 1.2 150])
[a,b,c,d,e] = ltiss(sys)
```

The matrices a and e now contain the values of $A(L, R, C)$ and $E(L, R, C)$ for L $=15, R=1.2$, and $C=150$.

Finally, the polytopic counterpart of this affine model is given by

```
pols = aff2pol(pds)
psinfo(pols)
Polytopic model with 8 vertex systems
    Each system has 2 state(s), 0 input(s), and O output(s)
```


Linear-Fractional Models of Uncertainty

For systems with both dynamical and parametric uncertainty, a more general representation of uncertainty is the linear-fractional model of Figure 2-8 [1, 2]. In this generic model:

- The LTI system $P(s)$ gathers all known LTI components (controller, nominal models of the system, sensors, and actuators, . . .)
- The input vector u includes all external actions on the system (disturbance, noise, reference signal, . . .) and the vector y consists of all output signals generated by the system
- Δ is a structured description of the uncertainty. Specifically,

$$
\Delta=\operatorname{diag}\left(\Delta_{1}, \ldots, \Delta_{r}\right)
$$

where each uncertainty block Δ_{i} accounts for one particular source of uncertainty (neglected dynamics, nonlinearity, uncertain parameter, etc.). The diagonal structure of Δ reflects how each uncertainty component Δ_{i} enters the loop and affects the overall behavior of the true system.

Figure 2-8: Linear-fractional uncertainty

How to Derive Such Models

Before proceeding with the specification of such uncertainty models, we illustrate how natural uncertainty descriptions can be recast into the standard linear-fractional model of Figure 2-8.

Example 2.2 . Consider the feedback loop

where

- $G(s)$ is an uncertain LTI system approximated within 5% accuracy by the second-order nominal model

$$
G_{0}(s)=\frac{1}{s^{2}+0.01 s+1}
$$

In other words, $G(s)=G_{0}(s)(I+\Delta(s))$ where the multiplicative dynamical uncertainty $\Delta(s)$ is any stable LTI system with RMS gain less than 0.05

- $k(t)$ is a fluctuating gain modeled by

$$
k(t)=k_{0}+\delta(t)
$$

where k_{0} is the nominal value and $|\delta(t)|<0.1 k_{0}$.
To derive a linear-fractional representation of this uncertain feedback system, first separate the uncertainty from the nominal models by rewriting the loop as

Then pull out all uncertain components and lump them together into a single block as follows:

If $\binom{p_{1}}{p_{2}}$ and $\binom{q_{1}}{q_{2}}$ denote the input and output vectors of the uncertainty
block, the plant $P(s)$ is simply the transfer function from $\left(\begin{array}{c}q_{1} \\ q_{2} \\ r\end{array}\right)$ to $\left(\begin{array}{c}p_{1} \\ p_{2} \\ y\end{array}\right)$ in the diagram.

Hence the SYSTEM matrix of $P(s)$ can be computed with sconnect or by specifying the following interconnection:

Specification of the Uncertainty

In linear-fractional uncertainty models, each uncertainty block Δ_{i} is a dynamical system characterized by

- Its dynamical nature: linear time-invariant or time-varying, nonlinear memoryless, arbitrary nonlinear
- Its dimensions and structure (full block or scalar block $\Delta_{i}=\delta_{i} \times I$). Scalar blocks are used to represent uncertain parameters.
- Whether α ii is real or complex in the case of scalar uncertainty $\Delta_{i}=\delta_{i}$ by I
- Quantitative information such as norm bounds or sector bounds

The properties of each individual uncertainty block Δ_{i} are specified with the function ublock. These individual descriptions are then appended with udiag to form a complete description of the structured uncertainty

$$
\Delta=\operatorname{diag}\left(\Delta_{1}, \ldots, \Delta_{r}\right)
$$

Proper quantification of the uncertainty is important since this determines achievable levels of robust stability and performance. The basics about quantification issues are reviewed next.

Norm-Bounded Uncertainty

Norm bounds specify the amount of uncertainty in terms of RMS gain. Recall that the RMS gain or L_{2} gain of a BIBO-stable system is defined as the worst-case ratio of the input and output energies:

$$
\|\Delta\|_{\infty}=\sup _{\substack{w \in L_{2} \\ w \neq 0}} \frac{\|\Delta w\|_{L_{2}}}{\|w\|_{L_{2}}}
$$

where

$$
\|w\|_{L_{2}}^{2}=\int_{0}^{\infty} w^{T}(t) w(t) d t
$$

For additive uncertainty

$$
G=G_{0}+\Delta
$$

the bound on $\|\Delta\|_{\infty}$ is an estimate of the worst-case gap $G-G_{0}$ between the true system G and its linear model $G_{0}(s)$. For multiplicative uncertainty

$$
G=G_{0}(I+\Delta),
$$

this bound quantifies the relative gap between G and its model G_{0}.
Norm bounds are also useful to quantify parametric uncertainty. For instance, an uncertain parameter p can be represented as

$$
p=p_{0}(1+\delta), \quad|\delta|<\delta_{\max }
$$

where p_{0} is the nominal value and $\delta_{\max }$ bounds the relative deviation from p_{0}. If $p \in[\underline{p}, \bar{p}]$, then p_{0} and $\delta_{\text {max }}$ are given by

$$
p_{0}=\frac{\underline{p}+\bar{p}}{2}, \quad \delta_{\max }=\frac{\bar{p}-\underline{\underline{p}}}{2 p_{0}}
$$

When Δ is LTI (i.e., when the physical system G itself is LTI), the uncertainty can be quantified more accurately by using frequency-dependent bounds of the form

$$
\begin{equation*}
\left\|W^{-1}(s) \Delta(s)\right\|_{\infty}<1 \tag{2-2}
\end{equation*}
$$

where $W(s)$ is some SISO shaping filter. Such bounds specify different amounts of uncertainty across the frequency range and the uncertainty level at each frequency is adjusted through theshaping filter shaping filter $W(s)$. For instance, choosing

$$
W(s)=\frac{2 s+1}{s+100}
$$

results in the frequency-weighted uncertainty bound

$$
(|\Delta(j \omega)|<\beta(\omega)):=\sqrt{\frac{4 \omega^{2}+1}{\omega^{2}+10^{4}}}
$$

fquan2.ps drawn in Figure 2-9.

Figure 2-9: Frequency-dependent bound on $|\Delta(j w)|$
These various norm bounds are easily specified with ublock. For instance, a 2 -by- 3 LTI uncertainty block $\Delta(s)$ with RMS gain smaller than 10 is declared by

```
delta = ublock([2 3],10)
```

while a scalar nonlinearity $\Phi(\cdot)$ with unit RMS gain is defined by

```
phi = ublock(1,1,'nl')
```

In these commands, the first argument dimensions the block, the second argument quantifies the uncertainty by a norm bound or sector bounds, and the optional third argument is a string specifying the nature and structure of the uncertainty block. The default properties are full, complex-valued, and linear time invariant (LTI).

Scalar blocks and real parameter uncertainty are denoted by the letters s and r, respectively. For example, the command

```
delta = ublock(3,0.5,'sr')
```

declares a $3-\beta \psi-3$ block $\Delta=\delta-\beta \psi-I$ with repeated real parameter δ bounded by $|\delta| ð 0.5$. Finally, setting the second argument of ublock to a SISO system $W(s)$ specifies a frequency-dependent norm bound on the LTI uncertainty block $\Delta(s)$. Thus,

```
delta = ublock(2, ltisys('tf',[100 0],[1 100]))
```

declares an LTI uncertainty $\Delta(s) \in \mathbf{C}^{2 \times 2}$ satisfying

$$
\sigma_{\max }<(\Delta(j \omega))<|W(j \omega)|, \quad W(s)=\frac{100 s}{s+100}
$$

at all frequencies ω.
After specifying each block Δ_{i} with ublock, call udiag to derive a complete description of the uncertainty structure

$$
\Delta=\operatorname{diag}\left(\Delta_{1}, \ldots, \Delta_{n}\right) .
$$

For instance, the commands

```
delta1 = ublock([3 1],0.1)
delta2 = ublock(2,2,'s')
delta3 = ublock([1 2],100,'nl')
delta = udiag(delta1,delta2,delta3)
```

specify the uncertainty structure

$$
\Delta=\operatorname{diag}\left(\Delta_{1}, \Delta_{2}, \Delta_{3}\right)
$$

where

- $\Delta_{1}(s) \in \mathbf{C}^{3 \times 1}$ and $\left\|\Delta_{1}\right\|_{\infty}<0.1$
- $\Delta_{2}=\delta$ by I_{2} with $\delta \in \mathbf{C}$ and $|\delta|<2$
- $\Delta_{3}(\cdot)$ is a nonlinear operator with two inputs and one output and satisfies $\left\|\Delta_{3}\right\|_{\infty}<100$.

Finally, uinfo displays the characteristics of uncertainty structures declared with ublock and udiag.

```
uinfo(delta)
```

block	dims	type	real/cplx	full/scal	bounds
1	3×1	LTI	c	f	norm $<=0.1$
2	2×2	LTI	c	s	norm $<=2$
3	1×2	NL	r	f	norm $<=100$

Sector-Bounded Uncertainty

The behavior of uncertain dynamical components can also be quantified in terms of sector bounds on their time-domain response [5, 4]. A (possibly nonlinear) BIBO-stable system $\phi(\cdot)$ is said to be in the sector $\{a, b\}$ if the mapping

$$
\phi: u \in L_{2} \alpha y \in L_{2}
$$

satisfies a quadratic constraint of the form

$$
\int_{0}^{\infty}(y(t)-a u(t))^{T}(y(t)-b u(t)) d t \leq 0 \text { for all } u \in L_{2}
$$

As a special case, passive systems satisfy

$$
\int_{0}^{\infty} y(t)^{T} u(t) d t \geq 0
$$

which corresponds to the sector $\{0,+\infty\}$. Note that sector bounds can always be converted to norm bounds since ϕ is in the sector $\{a, b\}$ if and only if

$$
\left\|\phi-\frac{a+b}{2}\right\|_{\infty}<\frac{|a-b|}{2}
$$

If ϕ is passive, a bilinear transformation maps ϕ to the operator $(I-\phi)(I+\phi)^{-1}$ of norm less than one.

The system $\phi(\cdot)$ is called memoryless if $y(t)$ only depends on the input value $u(t)$ at time t, i.e.,

$$
y(t)=\phi(u(t)) .
$$

For memoryless systems, the sector condition reduces to the "instantaneous" property

$$
(y(t)-a u(t))^{T}(y(t)-b u(t)) ð 0 \quad \text { at all time } t .
$$

In the scalar case, this means that the response $y=\phi(u)$ lies in the sector delimited by the two lines $y=a u$ and $y=b u$ as illustrated below.

A simple example is the nonlinear spring $y=k(u)$ with

$$
k(u)= \begin{cases}2 u \quad \text { if }|u| \leq 1 \\ u+1 & \text { if } u>1 \\ u-1 & \text { if } u<-1\end{cases}
$$

The response of this spring lies in the sector $\{1,2\}$ as is seen from Figure 2-10. This scalar memoryless nonlinearity is specified with ublock by
k = ublock(1,[12],'nlm')

Robustness in the face of sector-bounded uncertainty is analyzed by the circle and Popov criteria.

From Affine to Linear-Fractional Models

Since some uncertain systems are more naturally specified as affine parameter-dependent systems, the function aff2lft is provided to derive a linear-fractional representation of their parametric uncertainty. All uncertain parameters are assumed real and are repeated in the Δ structure when necessary. For instance, the system

$$
\frac{d x}{d t}=\left(\begin{array}{cc}
p_{1} & 1 \tag{2-3}\\
-p_{1} & p_{1}+2 p_{2}
\end{array}\right) x
$$

Figure 2-10: Nonlinear spring $y=k(u)$
with constant $p_{1} \in[2,10]$ and time-varying $p_{2} \in[-1,3]$ is specified by

```
s0 = ltisys([0 1,0 0])
s1 = ltisys([1 0, 1 1],0) % p1
```

```
s2 = ltisys([0 0,0 2],0) % p2
pv = pvec('box',[2 10, 1 3],[0 0,-Inf Inf])
pds = psys(pv,[s0 s1 s2])
```

To derive the linear-fractional representation of the uncertainty on p_{1}, p_{2}, type

```
[P,delta] = aff2lft(pds)
```

On output:

- The nominal plant P corresponds to the average values of p_{1} and p_{2}. Specifically, closing the interconnection of Figure 2-8 with $\Delta \equiv 0$ yields the system (2-4) for $p_{1}=6$ and $p_{2}=1$, as confirmed by

```
cls = slft(zeros(3),P)
```

a = ltiss(cls)
a $=$
$6 \quad 1$
68

- The uncertainty structure delta consists of real scalar blocks as confirmed by

```
uinfo(delta)
```

block	dims	type	real/cplx	full/sc al	bounds
1	$2-b y-2$	LTI	r	s	norm $<=4$
2	$1-$ by-1	LTV	r	s	norm $<=2$

Note that the parameter p_{1} is repeated and that the norm bound corresponds to the maximal deviation from the average value of the parameter.

The corresponding block diagram appears in Figure 2-11.

Figure 2-1 1: Linear-fractional representation of the system (2-4)

References

[1] Doyle, J.C. and G. Stein, "Multivariable Feedback Design: Concepts for a Classical/Modern Synthesis," IEEE Trans. Aut. Contr., AC-26 (1981), pp. 4-16.
[2] Doyle, J.C., "Analysis of Feedback Systems with Structured Uncertainties," IEE Proc., vol. 129, pt. D (1982), pp. 242-250.
[3] Boyd, S., L. El Ghaoui, E. Feron, V. Balakrishnan, Linear Matrix
Inequalities in Systems and Control Theory, SIAM books, Philadelphia, 1994.
[4] Vidyasagar, M., Nonlinear System Analysis, Prentice-Hall, Englewood Cliffs, 1992.
[5] Zames, G., "On the Input-Output Stability of Time-Varying Nonlinear Feedback Systems, Part I and II," IEEE Trans. Aut. Contr., AC-11 (1966), pp. 228-238 and 465-476.

Robustness Analysis

Quadratic Lyapunov Functions 3-3
LMI Formulation 3-4
Quadratic Stability 3-6
Maximizing the Quadratic Stability Region 3-8
Decay Rate 3-9
Quadratic H_{∞} Performance 3-10
Parameter-Dependent Lyapunov Functions 3-12
Stability Analysis 3-14
μ Analysis 3-17
Structured Singular Value 3-17
Robust Stability Analysis 3-19
Robust Performance 3-21
The Popov Criterion 3-24
Real Parameter Uncertainty 3-25
Example 3-28
References 3-32

Control systems are often designed for a simplified model of the physical plant that does not take into account all sources of uncertainty. A-posteriori robustness analysis is then necessary to validate the design and obtain guarantees of stability and performance in the face of plant uncertainty. The LMI Control Toolbox offers a variety of tools to assess robust stability and robust performance. These tools cover most available Lyapunov-based and frequency-domain analysis techniques.

- Quadratic stability/performance
- Tests involving parameter-dependent Lyapunov functions
- Mixed- μ analysis
- The Popov criterion

Each test is geared to a particular class of uncertainty, for example, real parameter uncertainty for parameter-dependent Lyapunov functions, or memoryless nonlinearities for the Popov criterion. Hence users should select the most appropriate tool for their problem. Since all of these tests are based on sufficient conditions, they are only productive when they succeed in establishing robust stability or performance.

Quadratic Lyapunov Functions

The notions of quadratic stability and quadratic performance are useful to analyze linear time-varying systems

$$
E(t) \dot{x}(t)=A(t) x(t), \quad x(0)=x_{0} .
$$

Given such systems, a sufficient condition for asymptotic stability is the existence of a positive-definite quadratic Lyapunov function

$$
V(x)=x^{T} P x
$$

such that

$$
\frac{d V(x(t))}{d t}<0
$$

along all state trajectories. In terms of $Q:=P^{-1}$, this is equivalent to

$$
\begin{equation*}
A(t) Q E(t)^{T}+E(t) Q A(t)^{T}<0 \tag{3-1}
\end{equation*}
$$

at all times t.
Assessing quadratic stability is not tractable in general since (3-1) places an infinite number of constraints on Q. However, (3-1) can be reduced to a finite set of LMI contraints in the following cases:
$1 A(t)$ and $E(t)$ are fixed affine functions of some time-varying parameters $p_{1}(t), \ldots, p_{n}(t)$.

$$
\begin{aligned}
& A(t)=A_{0}+p_{1}(t) A_{1}+\ldots+p_{n}(t) A_{n} \\
& E(t)=E_{0}+p_{1}(t) E_{1}+\ldots+p_{n}(t) E_{n} .
\end{aligned}
$$

This is referred to as an affine parameter-dependent model.
$2 A(t)+j E(t)$ ranges in a fixed polytope of matrices, that is,

$$
\begin{aligned}
& A(t)=\alpha_{1}(t) A_{1}+\ldots+\alpha_{n}(t) A_{n} \\
& E(t)=\alpha_{1}(t) E_{1}+\ldots+\alpha_{n}(t) E_{n}
\end{aligned}
$$

with $\alpha_{i}(t) \check{\mathrm{S}} 0$ and $\sum_{i=1}^{n} \alpha_{i}(t)=1$. This is referred to as a polytopic model.
The first case corresponds to systems whose state-space equations depend affinely on time-varying physical parameters, and the second case to
time-varying systems modeled by an envelope of LTI systems (see "Uncertain State-Space Models" on page 2-14 for details). Note that quadratic Lyapunov functions guarantee stability for arbitrarily fast time variations, which is their main source of conservatism.

Quadratic Lyapunov functions are also useful to assess robust RMS performance. Specifically, a time-varying system

$$
\left\{\begin{align*}
E(t) \dot{x} & =A(t) x+B(t) u \tag{3-2}\\
y & =C(t) x+D(t) u
\end{align*}\right.
$$

with zero initial state satisfies

$$
\|y\|_{L_{2}}<\gamma\|u\|_{L_{2}}
$$

for all bounded input $u(t)$ if there exists a positive-definite Lyapunov function $V(x)=x^{T} P x$ such that

$$
\frac{d V(x)}{d t}+y^{T} y-\gamma^{2} u^{T} u<0
$$

In terms of $Q:=P^{-1}$, this is equivalent to the family of "Bounded Real Lemma" inequalities

$$
\left(\begin{array}{ccc}
A(t) Q E(t)^{T}+E(t) Q A(t)^{T} & B(t) & E(t) Q C(t)^{T} \\
B(t)^{T} & -\gamma I & D(t)^{T} \\
C(t) Q E(t)^{T} & D(t) & -\gamma I
\end{array}\right)<0
$$

The smallest γ for which such a Lyapunov function exists is called the quadratic H_{∞} performance. This is an upper bound on the worst-case RMS gain of the system (3-2).

LMI Formulation

Sufficient LMI conditions for quadratic stability are as follows [8, 1, 2]:
Affine models: consider the parameter-dependent model

$$
\begin{align*}
& E(p) \dot{x}=A(p) x, A(p)=A_{0}+p_{1} A_{1}+\ldots+p_{n} A_{n} \\
& E(t)=E_{0}+p_{1} E_{1}+\ldots+p_{n} E_{n} \tag{3-3}
\end{align*}
$$

where $p_{i}(t) \in\left[p_{i}, \bar{p}_{i}\right]$, and let

$$
V=\left\{\left(\omega_{1}, \ldots, \omega_{n}\right): \omega_{i} \in\left\{\underline{p}_{i}, \bar{p}_{i}\right\}\right\}
$$

denote the set of corners of the corresponding parameter box. The dynamical system (3-3) is quadratically stable if there exist symmetric matrices Q and $\left\{M_{i}\right\}_{i=1}^{n}$ such that

$$
\begin{gather*}
A(\omega) Q E(\omega)^{T}+E(\omega) Q A(\omega)^{T}+\sum_{i} \omega_{i}^{2} M_{i}<0 \text { for all } \omega \in V \tag{3-4}\\
A_{i} P E_{i}^{T}+E_{i} P A_{i}^{T}+M_{i} \geq 0 \text { for } i=1, \ldots, n \tag{3-5}\\
M_{i} \geq 0 \tag{3-6}\\
Q>I \tag{3-7}
\end{gather*}
$$

Polytopic models: the polytopic system

$$
E(t) \dot{x}=A(t) x, \quad A(t)+j E(t) \in \operatorname{Co}\left\{A_{1}+j E_{1}, \ldots, A_{n}+j E_{n}\right\}
$$

is quadratically stable if there exist a symmetric matrix Q and scalars $t_{i j}=t_{j i}$ such that

$$
\begin{gather*}
A_{i} Q E_{j}^{T}+E_{j} Q A_{i}^{T}+A_{j} Q E_{i}^{T}+E_{i} Q A_{j}^{T}<2 t_{i j} I \text { for } i, j \in\{1, \ldots, n\} \tag{3-8}\\
Q>I \tag{3-9}
\end{gather*}
$$

$$
\left[\begin{array}{ccc}
t_{11} & \ldots & t_{1 n} \tag{3-10}\\
\vdots & \ddots & \vdots \\
t_{1 n} & \cdots & t_{n n}
\end{array}\right]<0
$$

Note that these LMI conditions are in fact necessary and sufficient for quadratic stability whenever

- In the affine case, no parameter p_{i} enters both $A(t)$ and $E(t)$, that is, $A_{i}=0$ or $E_{i}=0$ for all i. The conditions (3-5)-(3-6) can then be deleted and it suffices to check (3-1) at the corners ω of the parameter box.
- In the polytopic case, either $A(t)$ or $E(t)$ is constant. It then suffices to solve (3-8)-(3-9) for $t_{i j}=0$.

Similar sufficient conditions are available for robust RMS performance. For polytopic systems, for instance, LMI conditions guaranteeing the RMS performance γ are as follows.

A symmetric matrix Q and scalars $t_{i j}=t_{j i}$ for $i, j \in\{1, \ldots, n\}$ exist such that

$$
\begin{aligned}
&\left(\begin{array}{ccc}
A_{i} Q E_{j}^{T}+E_{j} Q A_{i}^{T}+A_{j} Q E_{i}^{T}+E_{j} Q A_{i} & H & H \\
B_{i}^{T}+B_{j}^{T} & -2 \gamma I & H \\
C_{i} Q E_{i}^{T}+C_{i} Q E_{j}^{T} & D_{i}+D_{j} & -2 \gamma I
\end{array}\right)<2 t_{i j} \times 1 \\
& \\
& \\
& \\
& {\left[\begin{array}{ccc}
t_{11} & \cdots & t_{1 n} \\
\vdots & & \vdots \\
t_{1 n} & \cdots & t_{n n}
\end{array}\right]<0 }
\end{aligned}
$$

Quadratic Stability

The function quadstab tests the quadratic stability of polytopic or affine parameter-dependent systems. The corresponding LMI feasibility problem is solved with feasp.

Example 3.1. Consider the time-varying system

$$
\dot{x}=A(t) x
$$

where $A(t) \in \operatorname{Co}\left\{A_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}\right\}$ with

$$
A_{1}=\left(\begin{array}{cc}
0 & 1 \\
-2 & -0.2
\end{array}\right), A_{2}=\left(\begin{array}{cc}
0 & 1 \\
-2.2 & -0.3
\end{array}\right), A_{3}=\left(\begin{array}{cc}
0 & 1 \\
-1.9 & -0.1
\end{array}\right)
$$

This polytopic system is specified by

```
s1 = ltisys(a1)
s2 = ltisys(a2)
s3 = ltisys(a3)
polsys = psys([s1 s2 s3])
```

To test its quadratic stability, type

```
[tmin,P] = quadstab(polsys)
Solver for LMI feasibility problems L(x) < R(x)
    This solver minimizes t subject to L(x) < R(x) + t*I
    The best value of t should be negative for feasibility
Iteration : Best value of t so far
1 0.040521
2 0.032876
Result: best value of t: 0.032876
    f-radius saturation: 0.000% of R = 1.00e+08
This system is quadratically stable
tmin =
```

 3.2876 e 02
 Collectively denoting the LMI system (3-8)-(3-10) by $A(x)<0$, quadstab assesses its feasibility by minimizing τ subject to $A(x)<\tau I$ and returns the global minimum tmin of this problem. Hence the system is quadratically stable if and only if t min <0. In this case, the second output P is the Lyapunov matrix proving stability.

Maximizing the Quadratic Stability Region

This option of quadstab is only available for affine parameter-dependent systems where the E matrix is constant and each parameter $p_{i}(t)$ ranges in an interval

$$
p_{i}(t) \in\left[p_{i}, \bar{p}_{i}\right]
$$

Denoting the center and radius of each interval by $u_{i}=\frac{1}{2}\left(p_{i}+\bar{p}_{i}\right)$ and $\delta_{i}=\frac{1}{2}\left(\underline{p}_{i}-\bar{p}_{i}\right)$, the maximal quadratic stability region is defined as the largest portion of the parameter box where quadratic stability can be established. In other words, the largest dilatation factor such that the system is quadratically stable whenever

$$
p_{i}(t) \in\left[\mu i-\theta \delta_{i}, i+\theta \delta_{i}\right]
$$

Computing this largest factor is a generalized eigenvalue minimization problem (see gevp). This optimization is performed by quadstab when the first entry of the options vector is set to 1 .

Example 3.2. Consider the second-order system

$$
\dot{x}=A(k, f) x
$$

where

$$
A(k, f)=\left(\begin{array}{cc}
0 & 1 \\
-k & -f
\end{array}\right), \quad k(t) \in[10,12], \quad f(t) \in[0.5,0.7]
$$

This system is entered by

```
sO = ltisys([0 1;0 0])
s1 = ltisys([0 0; 1 0],0) % k
s2 = ltisys([0 0;0 1],0) % f
pv = pvec('box',[10 12;0.5 0.7]) % parameter box
affsys = psys(pv,[s0 s1 s2])
```

To compute the largest dilatation of the parameter box where quadratic stability holds, type

```
[marg,P] = quadstab(affsys,[1 0 0])
```

The result is

```
marg =
    1.4908e+00
```

which means 149% of the specified box, that is,

$$
k(t) \in[9.51,12.49], \quad f(t) \in[0.451,0.749]
$$

Note that marg Š 1 implies quadratic stability in the prescribed parameter box.

Decay Rate

For the time-varying system

$$
E(t) \dot{x}=A(t) x
$$

the quadratic decay rate α^{*} is the smallest α such that

$$
A(t) Q E(t)^{T}+E(t) Q A(t)^{T}<\alpha E(t) Q E(t)^{T}
$$

holds at all times for some fixed $Q>0$. The system is quadratically stable if and only if $\alpha^{*}<0$, in which case α^{*} is an upper bound on the rate of return to equilibrium. Specifically,

$$
x^{T}(t) Q^{-1} x(t)<e^{\alpha^{*} t}\left(x(0)^{T} Q^{-1} x(0)\right) .
$$

Note that $-\frac{\alpha^{*}}{2}$ is also the largest β such that the shifted system

$$
E(t) \dot{x}=(A(t)+\beta E(t)) x
$$

is quadratically stable.
For affine or polytopic models, the decay rate computation is attacked as a generalized eigenvalue minimization problem (see gevp). This task is performed by the function decay.

Example 3.3. For the time-varying system considered in Example 3.1, the decay rate is computed by
[drate, P] = decay(polsys)
This command returns
drate $=$
5.6016e 02

```
P =
    6.0707e 01 1.9400e 02
    1.9400e 02 3.1098e 01
```


Quadratic H_{∞} Performance

The function quadperf computes the quadratic H_{∞} performance of an affine parameter-dependent system

$$
\begin{array}{r}
E(p) \dot{x}=A(p) x+B(p) u \\
y=\mathrm{C}(p) x+D(p) u
\end{array}
$$

or of a polytopic system

$$
\begin{array}{r}
E(t) \dot{x}=A(t) x+B(t) u \\
y=\mathrm{C}(t) x+D(t) u
\end{array}
$$

where

$$
S(t)=\left(\begin{array}{cc}
A(t)+j E(t) & B(t) \\
C(t) & D(t)
\end{array}\right) \in \operatorname{Co}\left\{S_{1}, \ldots, S_{n}\right\}
$$

Recall that the quadratic H_{∞} performance $\gamma_{q p}$ is an upper bound on the worst-case input/output RMS gain of the system. Specifically

$$
\|y\|_{L_{2}}<\gamma_{q p}\|u\|_{L_{2}}
$$

holds for all bounded input u when the initial state is zero. The function quadperf can also be used to test whether the worst-case RMS gain does not exceed a given value $\gamma>0$, or to maximize the portion of the parameter box where this level γ is not exceeded.

Example 3.4. Consider the second-order system with time-varying mass and damping

$$
\begin{aligned}
& \left(\begin{array}{cc}
1 & 0 \\
0 & m(t)
\end{array}\right)\binom{\dot{x}}{\ddot{x}}=\left(\begin{array}{cc}
0 & 1 \\
-2 & -f(t)
\end{array}\right)\binom{x}{\dot{x}}+\binom{0}{1} u \\
& y=x, \quad m(t) \in[0.8,1.2], \quad f(t) \in[0.4,0.6]
\end{aligned}
$$

This affine parameter-dependent model is specified as

```
s0 = ltisys([0 1; 2 0],[0;1],[1 0],0,[1 0;0 0])
s1 = ltisys(zeros(2),[0;0],[0 0],0,[0 0;0 1]) % m
s2 = ltisys([0 0;0 1],[0;0],[0 0],0,0) % f
pv = pvec('box',[0.8 1.2 ; 0.4 0.6])
affsys = psys(pv,[s0 s1 s2])
```

and its quadratic H_{∞} performance from u to y is computed by

```
qperf = quadperf(affsys)
qperf =
```

 \(6.083 \mathrm{e}+00\)
 This value is larger than the nominal LTI performance for $m=1$ and $f=0.5$ as confirmed by

```
nomsys = psinfo(affsys,'eval',[1 0.5])
norminf(nomsys)
```

$1.4311 \mathrm{e}+00$

Parameter-Dependent Lyapunov Functions

The robustness test discussed next is applicable to affine parameter-dependent systems or time-invariant uncertain systems described by a polytope of models. To prove the robust stability of such systems, we seek a quadratic Lyapunov function that depends on the uncertain parameters or the polytopic coordinates in the case of a polytopic model. The resulting tests are less conservative than quadratic stability when the parameters are constant or slowly varying [6]. Moreover, available bounds on the rates of parameter variation can be explicitly taken into account.
Affine models: for an affine parameter-dependent system

$$
E(p) \dot{x}=A(p) x
$$

with parameter vector $p=\left(p_{1}, \ldots, p_{n}\right) \in \mathbf{R}^{n}$, we seek positive definite Lyapunov functions of the form

$$
V(x, p)=x^{T} Q(p)^{-1} x
$$

where

$$
Q(p)=Q_{0}+p_{1} Q_{1}+\ldots+p_{n} Q_{n}
$$

For such Lyapunov functions, the stability condition $\frac{d V(x, p)}{d t}<0$ is equivalent to

$$
\begin{equation*}
E(p) Q(p) A^{T}(p)+A(p) Q(p) E(p)^{T}-E(p) \frac{d Q}{d t} E(p)^{T}<0 \tag{3-11}
\end{equation*}
$$

Given interval bounds

$$
p_{i} \in\left[p_{i}, \bar{p}_{i}\right], \quad \in\left[\underline{v}_{i}, \bar{v}_{i}\right],
$$

on each p_{i} and its time derivative $\frac{d p_{i}}{d t}$, the vectors p and $\frac{d p}{d t}$ range in n-dimensional "boxes." If V and T list the corners of these boxes, (3-11) holds for all parameter trajectories if the following LMI problem is feasible [6].
Find symmetric matrices $Q_{0}, Q_{1}, \ldots, Q_{n}$, and $\left\{M_{i}\right\}_{i=1}^{n}$ such that

- For all $(\omega, \tau) \in V \times T$

$$
E(\omega) Q(\omega) A(\omega)^{T}+A(\omega) Q(\omega) E(\omega)^{T}-E(\omega)\left(Q(\tau)-Q_{0}\right) E(\omega)^{T}+\sum_{i} \omega_{i}^{2} M_{i}<0
$$

- For $\omega \in V$ and $i=1, \ldots, n$

$$
\begin{gathered}
A_{i}^{T} Q_{i} E(\omega)+E(\omega)^{T} Q_{i} A_{i}+A_{i}^{T} Q(\omega) E_{i}+E_{i}^{T} Q(\omega) A_{i}+ \\
A(\omega)^{T} Q_{i} E_{i}+E_{i}^{T} Q_{i} A(\omega)-E_{i}^{T}\left(Q(\tau)-Q_{0}\right)+M_{i} \geq 0
\end{gathered}
$$

- $Q(\omega)>I$ for all $\omega \in V$
- M_{i} Š 0

Note that these conditions reduce to quadratic stability when the rates of variation $\frac{d p_{i}}{d t}$ are allowed to range in $(-\infty,+\infty)$. In such cases indeed, Q_{1}, \ldots, Q_{n} must be set to zero for feasibility.
Polytopic models: A similar extension of the quadratic stability test is available for time-invariant polytopic systems

$$
E \dot{x}=A x
$$

where one of the matrices A, E is constant and the other uncertain. Assuming that E is constant and A ranges in the polytope

$$
A \in\left\{\alpha_{1} A_{1}+\ldots+\alpha_{n} A_{n}: \alpha_{i} \text { Š } 0, \alpha_{1}+\ldots+\alpha_{n}=1\right\}
$$

we seek a Lyapunov function of the form $V(x, \alpha)=x^{T} Q(\alpha)^{-1} x$ where

$$
Q(\alpha)=\alpha_{1} Q_{1}+\ldots+\alpha_{n} Q_{n}
$$

Using such Lyapunov functions, sufficient conditions for stability over the entire polytope are as follows.

There exist symmetric matrices Q_{1}, \ldots, Q_{n}, and scalars $t_{i j}=t_{j i}$ such that

$$
\begin{array}{r}
A_{i} Q_{j} E^{T}+E Q_{j} A_{i}^{T}+A_{j} Q_{i} E^{T}+E Q_{i} A_{j}^{T}<2 t_{i j} \\
Q_{j}>I \\
{\left[\begin{array}{ccc}
t_{11} & \ldots & t_{1 n} \\
\vdots & \ddots & \vdots \\
t_{1 n} & \ldots & t_{n n}
\end{array}\right]<0}
\end{array}
$$

Stability Analysis

Given an affine or polytopic system, the function pdlstab seeks a parameterdependent Lyapunov function establishing robust stability over a given parameter range or polytope of models. The syntax is similar to that of quadstab. For an affine parameter-dependent system with two uncertain parameters p_{1} and p_{2}, for instance, pdlstab is invoked by

```
[tmin,Q0,Q1,Q2] = pdlstab(ps)
```

Here ps is the system description and includes available information on the range of values and rates of variation of each parameter (see psys and pvec for details). If no rates of variation are specified, the parameters are regarded as time-invariant. The function pdlstab determines whether the sufficient LMI conditions listed above are feasible. Feasibility is established when tmin < 0 . In such cases, a parameter-dependent Lyapunov function proving stability is $V(x$, $p)=x^{T} Q(p)^{-1} x$ with

$$
Q(p)=Q_{0}+p_{1} Q_{1}+p_{2} Q_{2}
$$

Remark In the case of time-invariant uncertain parameters, pdlstab can be combined with a branch-and-bound scheme to reduce conservatism and enlarge the computed stability region. Specifically, if pdlstab fails to prove stability over the entire parameter range, you can split the range into smaller regions and try to establish stability on each subregion independently.

Example 3.5. Consider the second-order system

$$
\binom{\dot{x}}{\ddot{x}}=\left(\begin{array}{cc}
0 & 1 \\
-k(t) & -f(t)
\end{array}\right)\binom{x}{\dot{x}}
$$

where the stiffness $k(t)$ and damping $f(t)$ range in

$$
k(t) \in[5,10], \quad f(t) \in[0.01,0.1]
$$

and their rates of variation are bounded by

$$
\begin{equation*}
\frac{d k}{d t}<0.01, \quad \frac{d f}{d t}<1 \tag{3-12}
\end{equation*}
$$

This system and parameter data are specified by

```
sO = ltisys([0 1;0 0])
s1 = ltisys([0 0; 1 0],0)
s2 = ltisys([0 0;0 1],0)
pv = pvec('box',[5 10 ; 0.01 0.1],[ 0.01 0.01 ; 1 1])
ps = psys(pv,[s0 s1 s2])
```

The second argument of pvec defines the range of parameter values while the third argument specifies the bounds on their rate of variation.

This system is not quadratically stable over the specified parameter box as confirmed by

```
tmin = quadstab(ps)
tmin =
    8.0118e 04
```

Nevertheless, it turns out to be robustly stable when the parameter variations do not exceed the maximum rates (3-12), as shown by

```
[tmin, Q0, Q1, Q2] = pdlstab(ps)
```

Solver for LMI feasibility problems $L(x)<R(x)$
This solver minimizes t subject to $L(x)<R(x)+t * I$
The best value of t should be negative for feasibility
Iteration : Best value of t so far
$1 \quad 0.084914$
20.011826
$3 \quad 0.011826$
$4 \quad 1.878414 \mathrm{e} 03$

```
5 1.878414e 03
6 4.846478e 04
7 1.528537e 04
8 7.832830e 04
Result: best value of t: 7.832830e 04
    f-radius saturation: 0.003% of R = 1.00e+07
This system is stable for the specified parameter trajectories
```

This makes pdlstab a useful tool to analyze systems with constant or slowly-varying parameters.

μ Analysis

μ analysis investigates the robust stability or performance of systems with linear time-invariant linear-fractional uncertainty. It is also applicable to time-invariant parameter-dependent systems by first deriving an equivalent linear-fractional representation with aff2lft (see "From Affine to Linear-Fractional Models" on page 2-32 for details). Nonlinear and/or time-varying uncertainty is addressed by the Popov criterion discussed in the next section.

Structured Singular Value

μ analysis is based on the concept of structured singular value (SSV or μ) [3, $12,13,10]$. Consider the algebraic loop of Figure 3-1 where $M \in \mathrm{C}^{n \times m}$ and $\Delta=$ $\operatorname{diag}\left(\Delta_{1}, \ldots, \Delta_{n}\right)$ is a structured perturbation characterized by

- The dimensions of each block Δ_{i}
- Whether Δ_{i} is a complex or real-valued matrix
- Whether Δ_{i} is a full matrix or a scalar matrix of the form $\Delta_{i}=\delta_{i} \times I$

We denote by Δ the set of perturbations with this particular structure. The algebraic loop of Figure 3-1 is well posed if and only if $I-M \Delta$ is invertible. Measuring the smallest amount of perturbation $\Delta \in \Delta$ needed to destroy well-posedness is the purpose of the SSV.

Figure 3-1: Static $\boldsymbol{\mu}$ problem

Formally, the SSV of M with respect to the perturbation structure Δ is defined as [10]

$$
\mu(M):=\frac{1}{\min \left\{\sigma_{\max }(\Delta): \Delta \in \Delta \text { and } I-M \Delta \text { is singular }\right\}}
$$

with the convention $\mu_{\Delta}(M)=0$ if $I-M \Delta$ is invertible for all $\Delta \in \Delta$. From this definition, $I-M \Delta$ remains invertible as long as $\Delta \in \Delta$ satisfies

$$
\sigma_{\max }(\Delta)<1 / \mu_{\Delta}(M)
$$

That is, as long as the size of Δ does not exceed $K_{\Delta}:=1 / \mu_{\Delta}(M)$. The critical size K is called thewell-posedness margin well-posedness margin. Note that $\mu_{\Delta}(M)$ $=\sigma_{\max }(M)$ when $\Delta=\mathrm{C}^{m \times n}$ (unstructured case). Thus $\mu_{\Delta}(M)$ extends the notion of largest singular value to the case of structured perturbations.

Computing $\mu_{\Delta}(M)$ is an NP-hard problem in general. However, a conservative estimate of the margin K_{Δ} (upper bound μ) can be computed by solving an LMI problem [4]. Assuming for simplicity that the blocks Δ_{i} are square, the variables in this LMI problem are two scaling matrices

$$
D=\operatorname{diag}\left(D_{1}, \ldots, D_{n}\right), \quad G=\operatorname{diag}\left(G_{1}, \ldots, G_{n}\right)
$$

with the same block-diagonal structure as Δ and where

- $D_{i}=d_{i} \times I$ with $d_{i}>0$ if Δ_{i} is a full block, and $D_{i}=D_{i}^{H}>0$ otherwise.
- $G_{i}=0$ if Δ_{i} is complex-valued, $G_{i}=g_{i} \times I$ with $g_{i} \in \mathbf{R}$ if Δ_{i} is a real-valued full block, and $G_{i}=G_{i}^{H}$ if $\Delta_{i}=\delta_{i} \times I$ with δ_{i} real.

Denoting by D and G the sets of D, G scalings with such properties, an upper bound on $\mu_{\Delta}(M)$ is given by

$$
v_{\Delta}=\sqrt{\max \left(0, \alpha^{*}\right)}
$$

where α^{*} is the global minimum of the following generalized eigenvalue minimization problem [4]:

Minimize α over $D \in D$ and $G \in G$ subject to

$$
M^{H} D M+j\left(G M-M^{H} G\right)<\alpha D, \quad D>I
$$

The μ upper bound $v_{\Delta}(M)$ and the optimal D, G scalings are computed by the function mubnd. Its syntax is

$$
[m u, D, G]=\text { mubnd (M,delta) }
$$

where delta specifies the perturbation structure Δ (use ublock and udiag to define delta, see "Norm-Bounded Uncertainty" on page 2-27 and
"Sector-Bounded Uncertainty" for details). When each block Δ_{i} is bounded by 1 , the output mu is equal to $v_{\Delta}(M)$. If different bounds β_{i} are used for each Δ_{i}, the interpretation of mu is as follows:
The interconnection of Figure 3-1 is well posed for all $\Delta \in \Delta$ satisfying

$$
\sigma_{\max }\left(\Delta_{i}\right)<\frac{\beta_{i}}{\mathrm{mu}}
$$

For instance, $1 / \mathrm{mu}=0.9$ means that well-posedness is guaranteed for perturbation sizes that do not exceed 90% of the prescribed bounds.

Robust Stability Analysis

The structured singular value μ is useful to assess the robust stability of time-invariant linear-fractional interconnections (see Figure 3-2). Here $P(s)$ is a given LTI system and $\Delta(s)=\operatorname{diag}\left(\Delta_{1}(s), \ldots, \Delta_{n}(s)\right)$ is a norm- or sectorbounded linear time-invariant uncertainty with some prescribed structure.

Figure 3-2: Robust stability analysis
This interconnection is stable for all structured $\Delta(s)$ satisfying $\|\Delta\|_{\infty}<1$ if and only if $[3,12,10,16]$

$$
\mu_{\mathrm{m}}:=\sup _{\omega} \mu_{\Delta}(P(j \omega))<1
$$

The reciprocal $K_{\mathrm{m}}=1 / \mu_{\mathrm{m}}$ represents the robust stability margin, that is, the largest amount of uncertainty Δ that can be tolerated without losing stability.

As mentioned earlier, we can only compute a conservative estimate \hat{K}_{m} of K_{m} based on the upper bound v_{Δ} of μ_{Δ}. We refer to K_{m} as the guaranteed stability margin. A grid-based estimation of K_{m} is performed by mustab:

```
[margin,peakf] = mustab(P,delta,freqs)
```

On input, delta describes the uncertainty Δ (see ublock and udiag for details) and freqs is an optional vector of frequencies where to evaluate $v_{\Delta}(P(j \omega))$. On output, margin is the computed value of K_{m} and peakf is the frequency near which $v_{\Delta}(P(j \omega)$ peaks, i.e., where the margin is the smallest.
The uncertainty quantification may involve different bounds for each block Δ_{i}. In this case, margin represents the relative stability margin as a percentage of the specified bounds. More precisely, margin $=\theta$ means that stability is guaranteed as long as each block Δ_{i} satisfies

- For norm-bounded blocks

$$
\sigma_{\max }\left(\Delta_{i}(j \omega)\right)<\theta \beta_{i}(\omega)
$$

where $\beta_{i}(\omega)$ is the (possibly frequency-dependent) norm bound specified with ublock

- For sector-bounded blocks
Δ_{i} is in the sector $\left\{\frac{a+b}{2}-\theta \frac{b-a}{2}, \frac{a+b}{2}+\theta \frac{b-a}{2}\right\}$
where $a<b$ are the sector bounds specified with ublock. In the special case $b=+\infty$, this condition reads
Δ_{i} is in the sector $\left\{a+\frac{1-0}{1+0}, a+\frac{1+0}{1-0}\right\}$
for θ ð 1 and
Δ_{i} is outside the sector $\left\{a+\frac{1-0}{1+0}, a+\frac{1+0}{1-0}\right\}$
for $\theta>1$
For instance, margin $=0.7$ for a single-block uncertainty $\Delta(s)$ bounded by 3 means that stability is guaranteed for $\|\Delta\|_{\infty}<0.7$-by- $3=2.1$.

The syntax

```
[margin,peakf,fs,ds,gs] = mustab(P,delta)
```

also returns the D, G scaling matrices at the tested frequencies fs. To retrieve the values of D and G at the frequency fs(i), type

```
Di = getdg(ds,i), Gi = getdg(gs,i)
```

Note that Di and Gi are not necessarily the optimal scalings at fs(i). Indeed, the LMI optimization is often stopped before completion to speed up computations.

Caution: \hat{K}_{m} is computed by frequency sweep, i.e., by evaluating $v_{\Delta}(P(j \omega))$ over a finite grid of frequencies. The coarser the gridding, the higher the risk of underestimating the peak value of $v_{\Delta}(P(j \omega))$. Worse, this function may be discontinuous at its peaks when the uncertainty contains real blocks. In such cases, any "blind" frequency sweep is likely to miss the peak value and yield an overoptimistic stability margin. The function mustab has built-in tests to detect such discontinuities and minimize the risks of missing the critical peaks.

Robust Performance

In robust control, it is customary to formulate the design specifications as abstract disturbance rejection objectives. The performance of a control system is then measured in terms of the closed-loop RMS gain from disturbances to outputs (see "H•Control" on page 5-3 for details). The presence of uncertainty typically deteriorates performance. For an LTI system with linear-fractional uncer- tainty (Figure 3-3), the robust performance $\gamma_{\text {rob }}$ is defined as the worst-case RMS gain from u to y in the face of the uncertainty $\Delta(s)$.

This robust performance is generally worse (larger) than the nominal performance, i.e., the RMS gain from u to y for $(s) \equiv 0$.

Figure 3-3: Robust performance problem

Assessing whether the performance γ can be robustly sustained, that is, whether $\gamma_{\text {rob }}<\gamma$, is equivalent to a robust stability problem. Indeed, $\|y\|_{L_{2}}<\gamma\|u\|_{L_{2}}$ holds for all $\Delta(s)$ in the prescribed uncertainty set if and only if the interconnection of Figure 3-4 is stable for all $\Delta(s)$ and for $\Delta_{\text {perf }}(s)$ satisfying

$$
\left\|\Delta_{\text {perf }}(s)\right\|_{\infty}<\gamma^{-1}
$$

Given a norm- or sector-bounded linear time-invariant uncertainty $\Delta(s)$, the function muperf assesses the robust performance $\gamma_{\text {rob }}$ via this equivalent robust stability problem.

Figure 3-4: Equivalent robust stability problem
Two problems can be solved with muperf:

- Compute the robust performance $\gamma_{\text {rob }}$ for the specified uncertainty $\Delta(s)$. This is done by

```
grob = muperf(P,delta)
```

The value grob is finite if and only if the interconnection of Figure 3-3 is robustly stable.

- Assess the robustness of a given performance $\gamma=\mathrm{g}>0$ in the face of the uncertainty $\Delta(s)$. The command

```
margin = muperf(P,delta,g)
```

computes a fraction margin of the specified uncertainty bounds for which the RMS gain from u to y is guaranteed not to exceed γ.
Note that g should be larger than the nominal RMS gain for $\Delta=0$. The performance g is robust if and only if margin $\check{S} 1$.
The function muperf uses the following characterization of $\gamma_{\text {rob }}$. Assuming $\|\Delta\|_{\infty}$ <1 and denoting by D and G the related scaling sets,

$$
\gamma_{\mathrm{rob}}=\max _{\omega} \gamma_{\mathrm{rob}}(\omega)
$$

where $\gamma_{\mathrm{rob}}(\omega)$ is the global minimum of the LMI problem
Minimize γ over $D \in D, G \in G$ such that $D>0$ and

$$
P(j \omega)^{H}\left(\begin{array}{cc}
D & 0 \\
0 & I
\end{array}\right) P(j \omega)+j\left\{\left(\begin{array}{cc}
G & 0 \\
0 & 0
\end{array}\right) P(j \omega)-P(j \omega)^{H}\left(\begin{array}{cc}
G & 0 \\
0 & 0
\end{array}\right)\right\}<\left(\begin{array}{cc}
D & 0 \\
0 & \gamma^{2} I
\end{array}\right)
$$

The Popov Criterion

The Popov criterion gives a sufficient condition for the robust stability of the interconnection of Figure 3-5 where $G(s)$ is a given LTI system and $\phi=\operatorname{diag}\left(\phi_{1}\right.$, $\left.\ldots, \phi_{n}\right)$ is a sector-bounded BIBO-stable uncertainty satisfying $\phi(0)=0$. The operator ϕ can be nonlinear and/or time-varying which makes the Popov criterion more general than the μ stability test. For purely linear timeinvariant uncertainty, however, the μ test is generally less conservative.

Figure 3-5: Popov criterion
A state-space representation of this interconnection is

$$
\left\{\begin{array}{l}
\dot{x}=A x+B w \\
q=C x+D w \\
w=\phi(q)
\end{array}\right.
$$

or equivalently in block-partitioned form:

$$
\left\{\begin{aligned}
\dot{x} & =A x+\sum_{j} B_{j} w_{j} \\
q_{j} & =C_{j} x+D_{j} w \\
w & =\phi\left(q_{j}\right)
\end{aligned}\left(\in \mathbf{R}^{r_{j}}\right)\right.
$$

Suppose that $\phi_{j}(\cdot)$ satisfies the sector bound

$$
\begin{equation*}
\forall T>0, \quad \int_{0}^{T}\left(w_{j}-\alpha_{j} q_{j}\right)^{T}\left(w_{j}-\beta_{j} q_{j}\right) d t \leq 0 \tag{3-13}
\end{equation*}
$$

(this includes norm bounds as the special case $\beta_{j}=-\alpha_{j}$). To establish robust stability, the Popov criterion seeks a Lyapunov function of the form

$$
\begin{equation*}
V(x, t)=\frac{1}{2} x^{T} P x+\sum_{j} v_{j} \int_{0}^{q_{j}} \phi_{j}(z) d z-\sum_{j} \sigma_{j} \int_{0}^{t}\left(w_{j}-\alpha_{j} q_{j}\right)^{T}\left(w_{j}-\beta_{j} q_{j}\right) d \tau \tag{3-14}
\end{equation*}
$$

where $\sigma_{j}>0$ and v_{j} are scalars and $v_{j}=0$ unless $D_{j}=0$ and $\phi_{j}(\cdot)$ is a scalar memoryless nonlinearity (i.e., $w_{j}(t)$ depends only on $q_{j}(t)$; in such case, the sector constraint (3-13) reduces to $\left.\alpha_{j} q_{j}^{2} \leq q_{j} \phi_{j}\left(q_{j}\right) \leq \beta_{j} q_{j}^{2}\right)$.

Letting

$$
\begin{aligned}
K \alpha & :=\operatorname{diag}\left(\alpha_{j} I_{r_{j}}\right), & K_{\beta}:=\operatorname{diag}\left(\beta_{j} I_{r_{j}}\right) \\
S & :=\operatorname{diag}\left(\sigma_{j} I_{r_{j}}\right), & N:=\operatorname{diag}\left(v_{j} I_{r_{j}}\right)
\end{aligned}
$$

and assuming nominal stability, the conditions $V(x, t)>0$ and $d V / d t<0$ are equivalent to the following LMI feasibility problem (with the notation $\left.\mathcal{H}(M):=M+M^{\mathrm{T}}\right)$:

Find $P=P^{\mathrm{T}}$ and structured matrices S, N such that $S>0$ and

$$
\begin{equation*}
\mathcal{H}\left\{\binom{I}{0} P(A, B)+\binom{0}{I} N(C A, C B)-\binom{C^{T} K_{\alpha}}{D^{T} K_{\alpha}-1} S\binom{C^{T} K_{\beta}}{D^{T} K_{\beta}-1}^{T}\right\}<0 \tag{3-15}
\end{equation*}
$$

When $\phi(\cdot)$ is nonlinear time-varying, (3-15) reduces to the scaled small-gain criterion. The Popov stability test is performed by the command

$$
[t, P, S, N]=\operatorname{popov}(G, p h i)
$$

where G is the SYSTEM matrix representation of $G(s)$ and phi is the uncertainty description specified with ublock and udiag. The function popov returns the output t of the LMI solver feasp. Hence the interconnection is robust stable if $t<0$. In this case, P, S, and N are solutions of the LMI problem (3-15).

Real Parameter Uncertainty

A sharper version of the Popov criterion can be used to analyze systems with uncertain real parameters. Assume that $D_{j}=0$ and

$$
w_{j}=\phi_{j}\left(q_{j}\right):=\delta_{j} q_{j}
$$

where δ_{j} is an uncertain real parameter ranging in $\left[\alpha_{j}, \beta_{j}\right]$. Then a more general form for the corresponding term in the Lyapunov function (3-14) is

$$
\begin{align*}
& \int_{0}^{q_{j}} \phi(z)^{T} N_{j} d z-\int_{0}^{t}\left(w_{j}-\alpha_{j} q_{j}\right)^{T} S_{j}\left(w_{j}-\beta_{j} q_{j}\right) d \tau= \\
& \quad \delta_{j} x^{T} C^{T} N_{j} C x-\left(\delta_{j}-\alpha_{j}\right)\left(\delta_{j}-\beta_{j}\right) \int_{0}^{t} q_{j}^{T}\left(S_{j}+S_{j}^{T}\right) q_{j} d \tau \tag{3-16}
\end{align*}
$$

where S_{j} and N_{j} are $r_{j} \times r_{j}$ matrices subject to $S_{j}+S_{j}^{T}>O, N=N_{j}^{T}$, and $N_{j}=0$ when the parameter δ_{j} is time varying. As a result, the variables S and N in the Popov condition (3-15) assume a block-diagonal structure where $\sigma_{j} I_{r_{j}}$ and $v_{j} I_{r_{j}}$ are replaced by the full blocks S_{j} and N_{j}, respectively.

When all $\phi_{j}(\cdot)$ are real time-invariant parameters, the Lyapunov function (3-14) becomes

$$
V(x, t)=\frac{1}{2} x^{T}\left(P+\sum_{j} \delta_{j} C^{T} N_{j} C\right) x-\sum_{j}\left(\delta_{j}-\alpha_{j}\right)\left(\delta_{j}-\beta_{j}\right) \int_{0}^{t} q_{j}^{T}\left(S_{j}+S_{j}^{T}\right) q_{j} d \tau
$$

The first term can be interpreted as a parameter-dependent quadratic function of the state. This is analogous to the notion of parameter-dependent Lyapunov function discussed in "Parameter-Dependent Lyapunov Functions" on page 3-12, even though the Popov condition (3-15) is not equivalent to the robust stability conditions discussed in that section..

Finally, it is possible to obtain an even sharper test by applying the Popov criterion to the equivalent interconnection

$$
\left\{\begin{array}{l}
\dot{x}=\left(A x+\sum_{j} B_{j} C_{j} \tilde{w}_{j}\right) \tag{3-17}\\
\tilde{q}_{j}=x \\
\tilde{w}_{j}=\delta_{j} \tilde{q}_{j}
\end{array}\right.
$$

The Lyapunov function now becomes

$$
V(x, t)=\frac{1}{2} x^{T}\left(P+\sum_{j} \delta_{j} N_{j}\right) x-\sum_{j}\left(\delta_{j}-\alpha_{j}\right)\left(\delta_{j}-\beta_{j}\right) \int_{0}^{t} q_{j}^{T}\left(S_{j}+S_{j}^{T}\right) q_{j} d \tau
$$

with S_{j}, N_{j} subject to $S_{j}+S_{j}^{T}>O$ and $N_{j}=N_{j}^{T}$. The resulting test is discussed in [5, 6] and often performs as well as the real stability test while eliminating the hazards of a frequency sweep (see "Caution" on page 3-21).

To use this refined test, invoke popov as follows.

$$
[t, P, S, N]=\operatorname{popov}(G, p h i, 1)
$$

The third input 1 signals popov to perform the loop transformation (3-17) before solving the feasibility problem (3-15).

Example

The use of these various robustness tests is illustrated on the benchmark problem proposed in [14]. The physical system is sketched in Figure 3-6.

Figure 3-6: Benchmark problem
The goal is to design an output-feedback law $u=K(s) x_{2}$ that adequately rejects the disturbances w_{1}, w_{2} and guarantees stability for values of the stiffness parameter k ranging in [0.5, 2.0]. For $m_{1}=m_{2}=1$, a state-space description of this system is

$$
\left[\begin{array}{l}
\dot{x}_{1} \tag{3-18}\\
\dot{x}_{2} \\
\ddot{x}_{1} \\
\ddot{x}_{2}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-k & k & 0 & 0 \\
k & -k & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]\left(u+w_{1}\right)+\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right] w_{2}
$$

A solution of this problem proposed in [15] is the fourth-order controller $u=C_{K}\left(s I-A_{K}\right)^{-1} B_{K} x_{2}$ where

$$
\begin{gathered}
A_{K}=\left[\begin{array}{cccc}
0 & -0.7195 & 1 & 0 \\
0 & -2.9732 & 0 & 1 \\
-2.5133 & 4.8548 & -1.7287 & -0.9616 \\
1.0063 & -5.4097 & -0.0081 & 0.0304
\end{array}\right], B_{K}=\left[\begin{array}{c}
0.720 \\
2.973 \\
-3.37 \\
4.419
\end{array}\right] \\
C_{K}=\left[\begin{array}{llll}
-1.506 & 0.494 & -1.738 & -0.932
\end{array}\right]
\end{gathered}
$$

The concern here is to assess, for this particular controller, the closed-loop stability margin with respect to the uncertain real parameter k. Since the plant equations (3-18) depend affinely on k, we can define the uncertain physical system as an affine parameter-dependent system G with psys.

```
AO=[0 0 1 0;0 0 0 1;0 0 0 0;0 0 0 0];
BO=[0;0;1;0]; CO=[0 1 0 0]; DO=0;
SO=ltisys(AO,BO,CO,DO); % system for k=0
A1=[0 0 0 0;0 0 0 0; 1 1 0 0;1 1 0 0];
B1=zeros(4,1); C1=zeros(1,4); D1=0;
S1=ltisys(A1,B1,C1,D1,0); % k component
pv=pvec('box',[0.5 2]) % range of values of k
G=psys(pv,[S0,S1])
```

After entering the controller data as a SYSTEM matrix K, close the loop with slft.

```
\(\mathrm{Cl}=\operatorname{slft}(\mathrm{G}, \mathrm{K})\)
```

The result Cl is a parameter-dependent description of the closed-loop system.
To estimate the robust stability margin with respect to k, we can now apply to Cl the various tests described in this chapter:

- Quadratic stability: to determine the portion of the interval [0.5, 2] where quadratic stability holds, type

```
marg = quadstab(Cl,[\begin{array}{lll}{1}&{0}&{0}\end{array})
marg =
```

 4.1919e 01
 The value marg $=0.419$ means 41% of [$0.5,2$] (with respect to the center 1.25). That is, quadratic stability in the interval [$0.943,1.557]$. Since quadratic stability assumes arbitrarily fast time variations of the parameter k, we can expect this answer to be conservative when k is time invariant.

- Parameter-dependent Lyapunov functions: when k does not vary in time, a less conservative estimate is provided by pdlstab. To test stability for $k \in[0.5,2]$, type

```
t = pdlstab(Cl)
\(\mathrm{t}=\)
```

 2.1721e 01
 Since $t<0$, the closed loop is robustly stable for this range of values of k. Assume now that k slowly varies with a rate of variation bounded by 0.1 . To test if the closed loop remains stable in the face of such slow variations, redefine the parameter vector and update the description of the closed-loop system by

```
pv1 = pvec('box',[0.5 2],[ 0.1 0.1])
G1 = psys(pv1,[S0,S1])
Cl1 = slft(G1,K)
```

Then call pdlstab as earlier.

```
t = pdlstab(Cl1)
t =
2.0089e 02
```

Since t is again negative, this level of time variations does not destroy robust stability.

- $\boldsymbol{\mu}$ analysis: to perform μ analysis, first convert the affine parameter-dependent model Cl to an equivalent linear-fractional uncertainty model.

```
[PO,deltak] = aff2lft(Cl)
uinfo(deltak)
\begin{tabular}{llllll} 
block & dims & type & real/cplx & full/scal & bounds \\
1 & \(1 \times 1\) & LTI & \(r\) & \(s\) & norm <= \\
& & & & 0.75
\end{tabular}
```

Here PO is the closed loop system for the nominal value $k_{0}=1.25$ of k and the uncertainty on k is represented as a real scalar block deltak. Note that k must be assumed time invariant in the μ framework.
To get the relative parameter margin, type

```
[pmarg,peakf] = mustab(PO,deltak)
pmarg =
    1.0670e+00
peakf =
    6.3959e 01
```

The value pmarg $=1.064$ means stability as long as the deviation $|\delta k|$ from $k_{0}=1.25$ does not exceed $0.75 \times 1.067 \approx 0.80$. That is, as long as k remains in the interval [$0.45,2.05$]. This estimate is sharp since the closed loop becomes unstable for $\delta k=-0.81$, that is, for $k=k_{0}-0.81=0.44$:

```
spol(slft(PO, 0.81))
ans =
    1.0160e+00 + 1.9208e+00i
    1.0160e+00 1.9208e+00i
    1.0512e+00 + 9.7820e 01i
    1.0512e+00 9.7820e 01i
    6.2324e 03 + 6.3884e 01i
    6.2324e 03 6.3884e 01i
    2.7484e 01 + 1.9756e 01i
    2.7484e 01 1.9756e 01i
```

- Popov criterion: finally, we can apply the Popov criterion to the linear-fractional model returned by aff2lft

```
[t,P,D,N] = popov(PO,deltak)
```

t =

$$
1.3767 \mathrm{e} 02
$$

This test is also successful since $\mathrm{t}<0$. Note that the Popov criterion also proves stability for $k=k_{0}+\delta k(\cdot)$ where $\delta k(\cdot)$ is any memoryless nonlinearity with gain less than 0.75 .

References

[1] Barmish, B.R., "Stabilization of Uncertain Systems via Linear Control," IEEE Trans. Aut. Contr., AC-28 (1983), pp. 848-850.
[2] Boyd, S., and Q. Yang, "Structured and Simultaneous Lyapunov Functions for System Stability Problems," Int. J. Contr., 49 (1989), pp. 2215-2240.
[3] Doyle, J.C., "Analysis of Feedback Systems with Structured Uncertainties," IEE Proc., vol. 129, pt. D (1982), pp. 242-250.
[4] Fan, M.K.H., A.L. Tits, and J.C. Doyle, "Robustness in the Presence of Mixed Parametric Uncertainty and Unmodeled Dynamics," IEEE Trans. Aut. Contr., 36 (1991), pp. 25-38.
[5] Feron, E, P. Apkarian, and P. Gahinet, "S-Procedure for the Analysis of Control Systems with Parametric Uncertainties via Parameter-Dependent Lyapunov Functions," Third SIAM Conf. on Contr. and its Applic., St. Louis, Missouri, 1995.
[6] Gahinet, P., P. Apkarian, and M. Chilali, "Affine Parameter-Dependent Lyapunov Functions for Real Parametric Uncertainty," Proc. Conf. Dec. Contr., 1994, pp. 2026-2031.
[7] Haddad, W.M. and D.S. Berstein,"Parameter-Dependent Lyapunov Functions, Constant Real Parameter Uncertainty, and the Popov Criterion in Robust Analysis and Synthesis: Part 1 and 2," Proc. Conf. Dec. Contr., 1991, pp. 2274-2279 and 2632-2633.
[8] Horisberger, H.P., and P.R. Belanger, "Regulators for Linear Time-Varying Plants with Uncertain Parameters," IEEE Trans. Aut. Contr., AC-21 (1976), pp. 705-708.
[9] How, J.P., and S.R. Hall, "Connection between the Popov Stability Criterion and Bounds for Real Parameter Uncertainty," Proc. Amer. Contr. Conf., 1993, pp. 1084-1089.
[10] Packard, A., and J.C. Doyle, "The Complex Structured Singular Value," Automatica, 29 (1994), pp. 71-109.
[11] Popov, V.M., "Absolute Stability of Nonlinear Systems of Automatic Control," Automation and Remote Control, 22 (1962), pp. 857-875.
[12] Safonov, M.G., "L1 Optimal Sensitivity vs. Stability Margin," Proc. Conf. Dec. Contr., 1983.
[13] Stein, G. and J.C. Doyle, "Beyond Singular Values and Loop Shapes," J. Guidance, 14 (1991), pp. 5-16.
[14] Wie, B., and D.S. Berstein, "Benchmark Problem for Robust Control Design," J. Guidance and Contr., 15 (1992), pp. 1057-1059.
[15] Wie, B., Q. Liu, and K.-W. Byun, "Robust H_{∞} Control Synthesis Method and Its Application to Benchmark Problems," J. Guidance and Contr., 15 (1992), pp 1140-1148.
[16] Young, P. M., M. P. Newlin, and J. C. Doyle, "Let's Get Real," in Robust Control Theory, Springer Verlag, 1994, pp. 143-174.
[17] Zames, G., "On the Input-Output Stability of Time-Varying Nonlinear Feedback Systems, Part I and II," IEEE Trans. Aut. Contr., AC-11 (1966), pp. 228-238 and 465-476.

State-Feedback Synthesis

Multi-Objective State-Feedback 4-3
Pole Placement in LMI Regions 4-5
LMI Formulation 4-7
Extension to the Multi-Model Case 4-9
The Function msfsyn 4-11
Design Example 4-13
References 4-18

In many control problems, the design specifications are a mix of performance and robustness objectives expressed both in the time and frequency domains. These various objectives are rarely encompassed by a single synthesis criterion. While some tracking and robustness are best captured by an H_{∞} criterion, noise insensitivity is more naturally expressed in LQG terms, and transient behaviors are more easily tuned in terms of l_{1} norm or closed-loop damping.

The LMI framework is particularly well suited to multi-objective state-feedback synthesis. As an illustration, the LMI Control Toolbox offers tools for state-feedback design with a combination of the following objectives:

- H_{∞} performance (for tracking, disturbance rejection, or robustness aspects)
- H_{2} performance (for LQG aspects)
- Robust pole placement specifications (to ensure fast and well-damped transient responses, reasonable feedback gain, etc.)

These tools apply to multi-model problems, i.e., when the objectives are to be robustly achieved over a polytopic set of plant models.

Multi-Objective State-Feedback

The function msfsyn performs multi-model H_{2} / H_{∞} state-feedback synthesis with pole placement constraints. For simplicity, we describe the underlying problem in the case of a single LTI model. The control structure is depicted by Figure $4-1$. The plant $P(s)$ is a given LTI system and we assume full measurement of its state vector x.

Figure 4-1: State-feedback control
Denoting by $T_{\infty}(s)$ and $T_{2}(s)$ the closed-loop transfer functions from w to z_{∞} and z_{2}, respectively, our goal is to design a state-feedback law $u=K x$ that

- Maintains the RMS gain (H_{∞} norm) of T_{∞} below some prescribed value $\gamma_{0}>0$
- Maintains the H_{2} norm of T_{2} (LQG cost) below some prescribed value $v_{0}>0$
- Minimizes an H_{2} / H_{∞} trade-off criterion of the form

$$
\alpha\left\|T_{\infty}\right\|_{\infty}^{2}+\beta\left\|T_{2}\right\|_{2}^{2}
$$

- Places the closed-loop poles in a prescribed region D of the open left-half plane.

This abstract formulation encompasses many practical situations. For instance, consider a regulation problem with disturbance d and white measurement noise n, and let e denote the regulation error. Setting

$$
w=\binom{d}{n}, \quad z_{\infty}=e, \quad z_{2}=\binom{x}{u}
$$

the mixed H_{2} / H_{∞} criterion takes into account both the disturbance rejection aspects (RMS gain from d to e) and the LQG aspects (H_{2} norm from n to z_{2}). In addition, the closed-loop poles can be forced into some sector of the stable half-plane to obtain well-damped transient responses.

Pole Placement in LMI Regions

The concept of LMI region [3] is useful to formulate pole placement objectives in LMI terms. LMI regions are convex subsets D of the complex plane characterized by

$$
\mathcal{D}=\left\{z \in \mathbf{C}: L+M z+M^{T} \bar{z}<0\right\}
$$

where M and $L=L^{T}$ are fixed real matrices. The matrix-valued function

$$
f_{\mathcal{D}}(z):=L+M z+M^{T} \bar{z}
$$

is called the characteristic function of the region \mathcal{D}. The class of LMI regions is fairly general since its closure is the set of convex regions symmetric with respect to the real axis. More practically, LMI regions include relevant regions such as sectors, disks, conics, strips, etc., as well as any intersection of the above.

Another strength of LMI regions is the availability of a "Lyapunov theorem" for such regions. Specifically, if $\left\{\lambda_{i j}\right\}_{1 \leq i, j \leq m}$ and $\left\{\mu_{i j}\right\}_{1 \leq i, j \leq m}$ denote the entries of the matrices L and M, a matrix A has all its eigenvalues in \mathcal{D} if and only if there exists a positive definite matrix P such that [3]

$$
\left[\lambda_{i j} P+\mu_{i j} A P+\mu_{j i} P A^{T}\right]_{1 \leq i, j \leq m}<0
$$

with the notation

$$
\left[S_{i j}\right]_{1 \leq i, j \leq m}:=\left(\begin{array}{ccc}
S_{11} & \ldots & S_{i 1} \\
\vdots & \ddots & \vdots \\
S_{m 1} & \ldots & S_{m m}
\end{array}\right)
$$

Note that this condition is an LMI in P and that the classical Lyapunov theorem corresponds to the special case

$$
f_{D}(z)=z+\bar{z}
$$

Next we list a few examples of useful LMI regions along with their characteristic function f_{D} :

- Disk with center at ($-q, 0$) and radius r :

$$
f_{D}(z)=\left(\begin{array}{cc}
-r & \bar{z}+q \\
z+q & -r
\end{array}\right)
$$

- Conic sector centered at the origin and with inner angle θ :

The damping ratio of poles lying in this sector is at least $\cos \frac{\theta}{2}$.

- Vertical strip $h_{1}<x<h_{2}$:

LMI Formulation

Given a state-space realization

$$
\left\{\begin{array}{l}
\dot{x}=A x+B_{1} w+B_{2} u \\
z_{\infty}=C_{1} x+D_{11} w+D_{12} u \\
z_{2}=C_{2} x+D_{22} u
\end{array}\right.
$$

of the plant P, the closed-loop system is given in state-space form by

$$
\left\{\begin{aligned}
\dot{x} & =\left(A+B_{2} K\right) x+B_{1} w \\
z_{\infty} & =\left(C_{1}+D_{12} K\right) x+D_{11} w \\
z_{2} & =\left(C_{2}+D_{22} K\right) x
\end{aligned}\right.
$$

Taken separately, our three design objectives have the following LMI formulation:

- H_{∞} performance: the closed-loop RMS gain from w to z_{∞} does not exceed γ if and only if there exists a symmetric matrix X_{∞} such that [5]

$$
\left(\begin{array}{ccc}
\left(A+B_{2} K\right) X_{\infty}+X_{\infty}\left(A+B_{2} K\right)^{T} & B_{1} & X_{\infty}\left(C_{1}+D_{12} K\right)^{T} \\
B_{1}^{T} & -I & D_{11}^{T} \\
\left(C_{1}+D_{12} K\right) X_{\infty} & D_{11} & -\gamma^{2} I
\end{array}\right)<0
$$

- H_{2} performance: the closed-loop H_{2} norm of T_{2} does not exceed v if there exist two symmetric matrices X_{2} and Q such that

$$
\begin{aligned}
&\left(\begin{array}{rr}
\left(A+B_{2} K\right) X_{2}+X_{2}\left(A+B_{2} K\right)^{T} & B_{1} \\
B_{1}^{T} & -I
\end{array}\right)<0 \\
&\left(\begin{array}{cc}
Q & \left(C_{2}+D_{22} K\right) X_{2} \\
X_{2}\left(C_{2}+D_{22} K\right)^{T} & X_{2}
\end{array}\right)>0 \\
& \operatorname{Trace}(Q)<v^{2}
\end{aligned}
$$

(see "LQG performance" on page 1-7 for details)

- Pole placement: the closed-loop poles lie in the LMI region

$$
D=\left\{z \in \mathbf{C}: L+M z+M^{T} \bar{z}<0\right\}
$$

where

$$
L=L^{T}=\left\{\lambda_{i j}\right\}_{1 \leq i, j \leq m} \quad M=\left\{\mu_{i j}\right\}_{1 \leq i, j \leq m}
$$

if and only if there exists a symmetric matrix $X_{p o l}$ satisfying

$$
\begin{aligned}
& {\left[\lambda_{i j} X_{p o l}+\mu_{i j}\left(A+B_{2} K\right) X_{p o l}+\mu_{i j} X_{p o l}+\mu_{j i} X_{p o l}\left(A+B_{2} K\right)^{T}\right]_{1 \leq i, j \leq m}<0 } \\
& X_{p o l}>0
\end{aligned}
$$

These three sets of conditions add up to a nonconvex optimization problem with variables Q, K, X_{∞}, X_{2} and $X_{p o l}$. For tractability in the LMI framework, we seek a single Lyapunov matrix

$$
\begin{equation*}
X:=X_{\infty}=X_{2}=X_{p o l} \tag{4-1}
\end{equation*}
$$

that enforces all three objectives. With the change of variable $Y:=K X$, this leads to the following suboptimal LMI formulation of our multi-objective state-feedback synthesis problem [4, 3, 2]:

Minimize $\alpha \gamma^{2}+\beta$ Trace (Q) over Y, X, Q, and γ^{2} satisfying

$$
\begin{array}{r}
\left(\begin{array}{ccc}
A X+X A^{T}+B_{2} Y+Y^{T} B_{2}^{T} & B_{1} & X C_{1}^{T}+Y^{T} D_{12}^{T} \\
B_{1}^{T} & -I & D_{11}^{T} \\
C_{1} X+D_{12} Y & D_{11} & -\gamma^{2} I
\end{array}\right)<0 \\
\left(\begin{array}{cc}
Q & C_{2} X+D_{22} Y \\
X C_{2}^{T}+Y^{T} D_{22}^{T} & X
\end{array}\right)>0 \tag{4-3}\\
{\left[\lambda_{i j}+\mu_{i j}\left(A X+B_{2} Y\right) X_{p o l}+\mu_{j i}\left(X A^{T}+Y^{T} B_{2}^{T}\right)\right]_{1 \leq i, j \leq m}<0} \\
\text { Trace }(Q)<v_{0}^{2} \\
\gamma^{2}<\gamma_{0}^{2}
\end{array}
$$

Denoting the optimal solution by ($X^{*}, Y^{*}, Q^{*}, \gamma^{*}$), the corresponding state-feedback gain is given by

$$
K^{*}=Y^{*}\left(X^{*}\right)^{-1}
$$

and this gain guarantees the worst-case performances:

$$
\left\|T_{\infty}\right\|_{\infty} \leq \gamma^{*}, \quad\left\|T_{2}\right\|_{2} \leq \sqrt{\operatorname{Trace}\left(Q^{*}\right)}
$$

Note that K^{*} does not yield the globally optimal trade-off in general due to the conservatism of Assumption (4-1).

Extension to the Multi-Model Case

The LMI approach outlined above extends to uncertain linear time-varying plants

$$
P:\left\{\begin{array}{l}
\dot{x}=A(t) x+B_{1}(t) w+B_{2}(t) u \\
z_{\infty}=C_{1}(t) x+D_{11}(t) w+D_{12}(t) u \\
z_{2}=C_{2}(t) x+D_{22}(t) u
\end{array}\right.
$$

with state-space matrices varying in a polytope:

$$
\left(\begin{array}{ccc}
A(t) & B_{1}(t) & B_{2}(t) \\
C_{1}(t) & D_{11}(t) & D_{12}(t) \\
C_{2}(t) & 0 & D_{22}(t)
\end{array}\right) \in \mathbf{C o}\left\{\left(\begin{array}{ccc}
A_{k} & B_{1 k} & B_{2 k} \\
C_{1 k} & D_{11 k} & D_{12 k} \\
C_{2 k} & 0 & D_{22 k}
\end{array}\right): k=1, \ldots, K\right\}
$$

Such polytopic models are useful to represent plants with uncertain and/or time-varying parameters (see "Polytopic Models" on page 2-14 and the design example below). Seeking a single quadratic Lyapunov function that enforces the design objectives for all plants in the polytope leads to the following multi-model counterpart of the LMI conditions (4-2)-(4-6):

Minimize $\alpha \gamma^{2}+\beta \operatorname{Trace}(Q)$ over Y, X, Q, and γ^{2} subject to

$$
\begin{array}{r}
\left(\begin{array}{ccc}
A_{k} X+X A_{k}^{T}+B_{2 k} Y+Y^{T} B_{2 k}^{T} & B_{1 k} X C_{1 k}^{T}+Y^{T} D_{12 k}^{T} \\
B_{1 k}^{T} & -I & D_{11 k}^{T} \\
C_{1 k} X+D_{12 k} Y & D_{11 k} & -\gamma^{2} I
\end{array}\right)<0 \\
\left(\begin{array}{cc}
Q & C_{2 k} X+D_{22 k} Y \\
X C_{2 k}^{T}+Y^{T} D_{22 k}^{T} & X
\end{array}\right)>0 \\
{\left[\lambda_{i j}+\mu_{i j}\left(A_{k} X+B_{2 k} Y\right)+\mu_{j i}\left(X A_{k}^{T}+Y^{T} B_{2 k}^{T}\right)\right]_{1 \leq i, j \leq m}<0} \\
\operatorname{Trace}(Q)<v_{0}^{2} \\
\\
\gamma^{2}<\gamma_{0}^{2}
\end{array}
$$

The Function msfsyn

The function msfsyn implements the LMI approach to multi-model H_{2} / H_{∞} synthesis outlined above. The pole placement objectives are expressed in terms of LMI regions

$$
\mathcal{D}=\{z \in \mathbf{C}: L+M z+M \bar{z}<0\}
$$

characterized by the two matrices L and M. LMI regions are specified interactively with the function lmireg.
Denoting the closed-loop transfer functions from w to z_{∞} and z_{2} by T_{∞} and T_{2}, msfsyn computes a suboptimal solution to the mixed problem:

Minimize $\alpha\left\|T_{\infty}\right\|_{0}^{2}+\beta\left\|T_{2}\right\|_{2}^{2}$ subject to

- $\left\|T_{\infty}\right\|_{\infty}<\gamma_{0}$
- $\left\|T_{2}\right\|_{2}<v 0$
- The closed-loop poles lie in \mathcal{D}.

The syntax is

```
[gopt,h2opt,K,Pcl] = msfsyn(P,r,obj,region)
```

where

- P is the plant SYSTEM matrix in the single-model case, or the polytopic/parameter-dependent description of the plant in the multi-model case (see psys for details). The dimensions of the D_{22} matrix are specified by r
- obj $=\left[\gamma_{0}, v_{0}, \alpha, \beta\right]$ is a four-entry vector specifying the H_{2} / H_{∞} criterion
- region specifies the LMI region to be used for pole placement, the default being the open left-half plane. Use lmireg to generate the matrix region, or set it to $[L, M]$ if the characteristic matrices L and M are readily available.

On output, gopt and h2opt are the guaranteed H_{∞} and H_{2} performances, K is the state-feedback gain, and Pcl is the closed-loop system in SYSTEM matrix or polytopic model format.

Several mixed or unmixed designs can be performed with msfsyn. The various possibilities are summarized in the table below.

obj	Corresponding Design				
[0000]	pole placement only				
$\left[\begin{array}{lllll}0 & 0 & 1 & 0\end{array}\right]$	H_{∞}-optimal design				
$\left[\begin{array}{lllll}0 & 0 & 0 & 1\end{array}\right]$	H_{2}-optimal design				
$\left[\begin{array}{lllll}\mathrm{g} & 0 & 0 & 1\end{array}\right]$	minimize $\left\\|T_{2}\right\\|_{2}$ subject to $\left\\|T_{\infty}\right\\|_{\infty}<\mathrm{g}$				
$\left[\begin{array}{llll}0 & h & 1 & 0\end{array}\right]$	minimize $\left\\|T_{\infty}\right\\|_{\infty}$ subject to $\left\\|T_{2}\right\\|_{2}<\mathrm{h}$				
[0 0 a b]	minimize $\mathrm{a}\left\\|T_{\infty}\right\\|_{\infty}^{2}+\mathrm{b}\left\\|T_{2}\right\\|_{2}^{2}$				

Design Example

This example is adapted from [1] and covered by the demo sateldem. The system is a satellite consisting of two rigid bodies (main body and instrumentation module) joined by a flexible link (the "boom"). The boom is modeled as a spring with torque constant k and viscous damping f and finite-element analysis gives the following uncertainty ranges for k and f :

$$
\begin{array}{cc}
0.09 \text { ð } & k 0.4 \\
0.0038 \text { ð } & f 0.04:
\end{array}
$$

The dynamical equations are

$$
\left\{\begin{array}{c}
J_{1} \ddot{\theta}_{1}+f\left(\dot{\theta}_{1}-\dot{\theta}_{2}\right)+k\left(\theta_{1}-\theta_{2}\right)=T+w \\
J_{2} \ddot{\theta}_{2}+f\left(\dot{\theta}_{2}-\dot{\theta}_{1}\right)+k\left(\theta_{2}-\theta_{1}\right)=0
\end{array}\right.
$$

where θ_{1} and θ_{2} are the yaw angles for the main body and the sensor module, T is the control torque, and w is a torque disturbance on the main body.

Figure 4-1: Satellite
The control purpose is to minimize the influence of the disturbance w on the angular position θ_{2}. This goal is expressed through the following objectives:

- Obtain a good trade-off between the RMS gain from w to θ_{2} and the H_{2} norm of the transfer function from w to

$$
\left(\begin{array}{c}
\theta_{1} \\
\theta_{2} \\
T
\end{array}\right)
$$

(LQG cost of control)

- Place the closed-loop poles in the region shown in Figure 4-3 to guarantee some minimum decay rate and closed-loop damping

Figure 4-2: Pole placement region

- Achieve these objectives for all possible values of the varying parameters k and f. Since these parameters enter the plant state matrix in an affine manner, we can model the parameter uncertainty by a polytopic system with four vertices corresponding to the four combinations of extremal parameter values (see "From Affine to Polytopic Models" on page 2-20).

To solve this design problem with the LMI Control Toolbox, first specify the plant as a parameter-dependent system with affine dependence on k and f. A state-space description is readily derived from the dynamical equations as:

$$
\begin{gathered}
{\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & J_{1} & 0 \\
0 & 0 & 0 & J_{2}
\end{array}\right]\left[\begin{array}{l}
\dot{\theta}_{1} \\
\dot{\theta}_{2} \\
\ddot{\theta}_{1} \\
\ddot{\theta}_{2}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-k & k & -f & f \\
k & -k & f & -f
\end{array}\right]+\left[\begin{array}{c}
\theta_{1} \\
\theta_{2} \\
\dot{\theta}_{1} \\
\dot{\theta}_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right](w+T)} \\
z_{\infty}=\theta_{2}, \quad z_{2}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
\theta_{1} \\
\theta_{2} \\
\dot{\theta}_{1} \\
\dot{\theta}_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] T
\end{gathered}
$$

This parameter-dependent model is entered by the commands

```
a0 = [zeros(2) eye(2); zeros(2,4)]
ak = [zeros(2,4) ; [-1 1;1 -1] zeros(2)]
af = [zeros(2,4) ; zeros(2) [-1 1;1 -1]]
e0 = diag([[1 1 J1 J2])
b = [0 0;0 0;1 1;0 0] % b = [b1 b2]
c = [0 1 0 0;1 0 0 0;0 1 0 0;0 0 0 0] % c = [c1;c2]
d = [0 0;0 0;0 0;0 1]
% range of parameter values
pv = pvec('box',[0.09 0.4 ; 0.0038 0.04])
% parameter-dependent plant
P = psys(pv,[ ltisys(a0,b,c,d,e0) , ...
    ltisys(ak,0*b,0*c,0*d,0) , ...
    ltisys(af,0*b,0*c,0*d,0) ])
```

Next, specify the LMI region for pole placement as the intersection of the half-plane $x<-0.1$ and of the sector centered at the origin and with inner angle $3 \pi / 4$. This is done interactively with the function lmireg:

```
region = lmireg
```

To assess the trade-off between the H_{∞} and H_{2} performances, first compute the optimal quadratic H_{∞} performance subject to the pole placement constraint by

```
gopt = msfsyn(P,[\begin{array}{ll}{1}&{1}\end{array}],[\begin{array}{llll}{0}&{0}&{1}&{0}\end{array}],region)
```

This yields gopt ≈ 0. For a prescribed H_{∞} performance $g>0$, the best H_{2} performance h2opt is computed by

```
[gopt,h2opt,K,Pcl] = msfsyn(P,[1 1],[g 0 0 1],region)
```

Here obj $=\left[\begin{array}{llll}g & 0 & 0 & 1\end{array}\right]$ asks to optimize the H_{2} performance subject to $\left\|T_{\infty}\right\|_{\infty}<g$ and the pole placement constraint. Repeating this operation for the values $g \in\{0.01,0.1,0.2,0.5\}$ yields the Pareto-like trade-off curve shown in Figure 4-4.

By inspection of this curve, the state-feedback gain K obtained for $\mathrm{g}=0.1$ yields the best compromise between the H_{∞} and H_{2} objectives. For this choice of K, Figure 4-5 superimposes the impulse responses from w to θ_{2} for the four combinations of extremal values of k and f.

Finally, the closed-loop poles for these four extremal combinations are displayed in Figure 4-6. Note that they are robustly placed in the prescribed LMI region.

Figure 4-3: Trade-off between the \boldsymbol{H}_{∞} and \boldsymbol{H}_{2} performances

Figure 4-4: Impulse responses for the extremal values of k and f
Closed-loop poles for the four extremal sets of parameter values

Figure 4-5: Corresponding closed-loop poles

References

[1] Biernacki, R.M., H. Hwang, and S.P. Battacharyya, "Robust Stability with Structured Real Parameter Perturbations," IEEE Trans. Aut. Contr., AC-32 (1987), pp. 495-506.
[2] Boyd, S., L. El Ghaoui, E. Feron, V. Balakrishnan, Linear Matrix Inequalities in Systems and Control Theory, SIAM books, 1994.
[3] Chilali, M., and P. Gahinet, " H_{∞} Design with Pole Placement Constraints: an LMI Approach," to appear in IEEE Trans. Aut. Contr. Also in Proc. Conf. Dec. Contr., 1994, pp. 553-558.
[4] Khargonekar, P.P., and M.A. Rotea,"Mixed H_{2} / H_{∞} Control: A Convex Optimization Approach," IEEE Trans. Aut. Contr., 39 (1991), pp. 824-837.
[5] Scherer, C., " H_{∞} Optimization without Assumptions on Finite or Infinite Zeros," SIAM J. Contr. Opt., 30 (1992), pp. 143-166.

Synthesis of H_{∞} Controllers

$H \infty$ Control 5-3
Riccati- and LMI-Based Approaches 5-7
$H \infty$ Synthesis 5-10
Validation of the Closed-Loop System 5-13
Multi-Objective H_{∞} Synthesis 5-15
LMI Formulation 5-16
The Function hinfmix 5-20
Loop-Shaping Design with hinfmix 5-20
References 5-22
5-21

Disturbance rejection, input/output decoupling, and general robust stability or performance objectives can all be formulated as gain attenuation problems in the face of dynamical or parametric uncertainty. H_{∞} control is the cornerstone of design techniques for this class of problems.

The LMI Control Toolbox addresses three variants of output-feedback H_{∞} synthesis:

- Standard H_{∞} control for continuous-time systems. Both the Riccati-based and LMI-based solutions of this problem are implemented
- Multi-objective H_{∞} design (mixed H_{2} / H_{∞} synthesis with closed-loop pole placement in LMI regions)
- Discrete-time H_{∞} control via either Riccati- or LMI-based approaches

Additional facilities for loop-shaping design are described in Chapter 6, "Loop Shaping."

H_{∞} Control

The H_{∞} norm of a stable transfer function $G(s)$ is its largest input/output RMS gain, i.e.,

$$
\|G\|_{\infty}=\sup _{\substack{u \in L_{2} \\ u \neq 0}} \frac{\|y\|_{L_{2}}}{\|u\|_{L_{2}}}
$$

where L_{2} is the space of signals with finite energy and $y(t)$ is the output of the system G for a given input $u(t)$. This norm also corresponds to the peak gain of the frequency response $G(j \omega)$, that is,

$$
\|G\|_{\infty}=\sup _{\omega} \sigma_{\max }(G(j \omega))
$$

In its abstract "standard" formulation, the H_{∞} control problem is one of disturbance rejection. Specifically, it consists of minimizing the closed-loop RMS gain from w to z in the control loop of Figure 5-1. This can be interpreted as minimizing the effect of the worst-case disturbance w on the output z.

Figure 5-1: H_{∞} control
Partitioning the plant $P(s)$ as

$$
\binom{Z(s)}{Y(s)}=\binom{P_{11}(s) P_{12}(s)}{P_{21}(s) P_{22}(s)}\binom{W(s)}{U(s)}
$$

the closed-loop transfer function from w to z is given by the linear-fractional expression

$$
\begin{equation*}
F(P, K):=P_{11}+P_{12} K\left(I-P_{22} K\right)^{-1} P_{21} \tag{5-1}
\end{equation*}
$$

Hence the optimal H_{∞} control seeks to minimize $\|F(P, K)\|_{\infty}$ over all stabilizing LTI controllers $K(s)$. Alternatively, we can specify some maximum value γ for the closed-loop RMS gain and ask the following question:

Does there exist a stabilizing controller $K(s)$ that ensures $\|F(P, K)\|_{\infty}<\gamma$?
This is known as the suboptimal H_{∞} control problem, and γ is called the prescribed H_{∞} performance.

A number of control problems can be recast in this standard formulation.
Example 5.1. Consider the following disturbance rejection problem relative to the tracking loop of Figure 5-2:

For disturbances d with spectral density concentrated between 0 and $1 \mathrm{rad} / \mathrm{s}$, maintain the closed-loop RMS gain from d to the output y below 1%.

Since the RMS gain is the largest gain over all square-integrable inputs, external signals with uneven spectral density must be specified by means of shaping filters. For instance, a disturbance d with all its energy in the

Figure 5-2: Tracking loop with external disturbance
frequency band $[0,1]$ is described as

$$
d(s)=W_{1 p}(s) \tilde{d}(s)
$$

where \tilde{d} is an arbitrary square-integrable signal and $W_{\text {lp }}(s)$ is a low-pass filter with cutoff frequency at $1 \mathrm{rad} / \mathrm{s}$. From the closed-loop equation

$$
y=S d+\operatorname{Tr} \text { with } S:=(I+G K)^{-1} \text { and } T:=G K S,
$$

the transfer function from the equalized disturbance d to y is $S W_{1 p}$. Hence our disturbance rejection objective is equivalent to finding a stabilizing controller $K(s)$ such that

$$
\left\|S W_{l p}\right\|_{\infty}<1
$$

This RMS gain constraint is readily turned into a standard H_{∞} problem by observing that, in conformance with (5-1),

$$
S W_{1 p}=F(P, K) \text { with } P s:=\binom{W_{1 p}(s)-G(s)}{W_{1 p}(s)-G(s)}
$$

Example 5.2. Decoupling constraints are handled in a similar fashion. For instance, consider the loop of Figure 5-3 and the problem of decoupling the action of r_{1} on y_{1} from that of r_{2} on y_{2} in the control bandwidth $\omega \delta 10 \mathrm{rad} / \mathrm{s}$.

The closed-loop transfer function from $\binom{r_{1}}{r_{2}}$ to $\binom{y_{1}}{y_{2}}$
is $T=G K(I+G K)^{-1}$. Decoupling is achieved if $T(j \omega) \approx I$ in the bandwidth ω ð 10 $\mathrm{rad} / \mathrm{s}$, or equivalently if $S(j \omega)=I-T(j \omega)$ has a small gain in this bandwidth. This can be expressed as

$$
\left\|\frac{10}{s+10} S(s)\right\|_{\infty}<\varepsilon
$$

Figure 5-3: Decoupling problem
which is again of the standard form

$$
F(P, K) \|_{\infty}<\varepsilon \text { with } P(s):=\left(\begin{array}{cc}
\frac{10}{s+10} I_{2} & -\frac{10}{s+10} G(s) \\
I_{2} & -G(s)
\end{array}\right)
$$

Example 5.3. H_{∞} optimization is also useful for the design of robust controllers in the face of unstructured uncertainty. Consider the uncertain system

where the uncertainty $\Delta(\cdot)$ is an arbitrary BIBO-stable system satisfying the norm bound $\|\Delta\|_{\infty}<1$. From the small gain theorem, the controller $u=K(s) y$ robustly stabilizes this uncertain system if the nominal closed-loop transfer function $\mathcal{F}(P, K)$ from w to z satisfies

$$
\|\mathcal{F}(P, K)\|_{\infty}<1
$$

Finally, a useful application of H_{∞} synthesis is the loop shaping design procedure discussed in the next chapter.

Riccati- and LMI-Based Approaches

Since the continuous- and discrete-time cases are essentially similar, we review only continuous-time H_{∞} synthesis. Both the Riccati-based and LMI-based approaches are implemented in the LMI Control Toolbox. While the LMI-based approach is computationally more involved for large problems, it has the merit of eliminating the regularity restrictions attached to the Riccati-based solution. Since both approaches are state-space methods, the plant $P(s)$ is given in state-space form by

$$
\begin{aligned}
& \dot{x}=A x+B_{1} w+B_{2} u \\
& z=C_{1} x+D_{11} w+D_{12} u \\
& y=C_{2} x+D_{21} w+D_{22} u
\end{aligned}
$$

The Riccati-based approach is applicable to plants P satisfying
(A1) D_{12} and D_{21} have full rank,
(A2) $P_{12}(s)$ and $P_{21}(s)$ have no zeros on the $j \omega$-axis.
Given $\gamma>0$, it gives necessary and sufficient conditions for the existence of internally stabilizing controllers $K(s)$ such that

$$
\|\mathcal{F}(P, K)\|_{\infty}<\gamma
$$

Specifically, the H_{∞} performance γ is achievable if and only if [2]:
(i) $\left.\gamma>\max \left(\sigma_{\max }\left(I-D_{12} D_{12}^{+}\right) D_{11}\right), \sigma_{\max }\left(D_{11}\left(I-D_{21}^{+} D_{21}\right)\right)\right)$
(ii) the Riccati equations associated with the Hamiltonian pencils

$$
\begin{aligned}
& H-\lambda \varepsilon=\left(\begin{array}{cc|ccc}
A & 0 & 0 & \gamma^{-1} B_{1} & B_{2} \\
0 & -A^{T} & -C_{1}^{T} & 0 & 0 \\
\hline C_{1} & 0 & -I & \gamma^{-1} D_{11} D_{12} \\
0 & \gamma^{-1} B_{1}^{T} & \gamma^{-1} D_{11}^{T} & -I & 0 \\
0 & B_{2}^{T} & D_{12}^{T} & 0 & 0
\end{array}\right)-\lambda\left(\begin{array}{cc}
I & 0 \\
0 & 0
\end{array}\right) \\
& J-\lambda \varepsilon=\left(\begin{array}{cc|ccc}
A^{T} & 0 & 0 & \gamma^{-1} C_{1}^{T} & C_{2}^{T} \\
0 & -A & -B_{1} & 0 & 0
\end{array}\right)-\lambda\left(\begin{array}{ccc}
I & 0 \\
\hline 0 & 0
\end{array}\right)
\end{aligned}
$$

have stabilizing solutions X_{∞} and Y_{∞}, respectively
(iii) X_{∞} and Y_{∞} further satisfy

$$
X_{\infty} \text { Š } 0, \quad Y_{\infty} \text { Š } 0, \quad \rho\left(X_{\infty} Y_{\infty}\right)<\gamma^{2}
$$

Using this characterization, the optimal H_{∞} performance $\gamma_{\text {opt }}$ can be computed by bisection (the so-called γ-iterations). An H_{∞} controller with performance $\gamma \geq \gamma_{\text {opt }}$ is then given by explicit formulas involving X_{∞}, Y_{∞}, and the plant state-space matrices. Singular H_{∞} problems (those violating (A1)-(A2)) require regularization by small perturbation. A notable exception is the direct computation of the optimal H_{∞} performance when D_{12} or D_{21} is singular [5].
In comparison, the LMI approach is applicable to any plant and does not involve γ-iterations. Rather, the H_{∞} performance is directly optimized by solving the following LMI problem [4, 6]:

Minimize γ over $R=R^{T}$ and $S=S^{T}$ such that

$$
\begin{gather*}
\left(\begin{array}{cc}
N_{12} & 0 \\
0 & I
\end{array}\right)^{T}\left(\begin{array}{ccc}
A R+R A^{T} & R C_{1}^{T} & B_{1} \\
C_{1} R & -\gamma I & D_{11} \\
B_{1}^{T} & D_{11}^{T} & -\gamma I
\end{array}\right)\left(\begin{array}{cc}
N_{12} & 0 \\
0 & I
\end{array}\right)<0 \tag{5-2}\\
\left(\begin{array}{cc}
N_{21} & 0 \\
0 & I
\end{array}\right)^{T}\left(\begin{array}{ccc}
A^{T} S+S A & S B_{1} & C_{1}^{T} \\
B_{1}^{T} S & -\gamma I & D_{11}^{T} \\
C_{1} & D_{11} & -\gamma I
\end{array}\right)\left(\begin{array}{cc}
N_{21} & 0 \\
0 & I
\end{array}\right)<0 \tag{5-3}\\
\left(\begin{array}{cc}
R & I \\
I & S
\end{array}\right) \geq 0 \tag{5-4}
\end{gather*}
$$

where N_{12} and N_{21} denote bases of the null spaces of $\left(B_{2}^{T}, D_{12}^{T}\right)$ and (C_{2}, D_{21}), respectively.
This problem falls within the scope of the LMI solver mincx. Note that the LMI constraints (5-2)-(5-3) amount to the inequality counterpart of the H_{∞} Riccati equations, R^{-1} and S^{-1} being solutions of these inequalities. Again, explicit formulas are available to derive H_{∞} controllers from any solution (R, S, γ) of (5-2)-(5-4) [3].

H_{∞} Synthesis

The LMI Control Toolbox supports continuous- and discrete-time H_{∞} synthesis using either Riccati- or LMI-based approaches. Transparency and numerical reliability were primary concerns in the development of the related tools. Original features of the Riccati-based functions include:

- The use of pencil-based Riccati solvers for highly accurate computation of Riccati solutions (see care, ricpen, and their discrete-time counterparts)
- Direct computation of the optimal H_{∞} performance when D_{12} and D_{21} are rank-deficient (without using regularization) [5]
- Automatic regularization of singular problems for the controller computation.
In addition, reduced-order controllers are computed whenever the matrices I -$\gamma^{-2} X_{\infty} Y_{\infty}$ or $I-R S$ are nearly rank-deficient. The functions for standard H_{∞} synthesis are listed in Table 5-1.

Table 5-1: Functions for H_{∞} synthesis

\boldsymbol{H}_{∞} synthesis	Riccati-based	LMI-based
Continuous-time	hinfric	hinflmi
Discrete-time	dhinfric	dhinflmi

To illustrate the use of hinfric and hinflmi, consider the simple first-order plant $P(s)$ with state-space equations

$$
\left\{\begin{array}{l}
\dot{x}=w+2 u \\
z=x \\
y=-x+w
\end{array}\right.
$$

This plant is specified as a SYSTEM matrix by

```
a=0; b1=1; b2=2; c1=1; d11=0; d12=0; c2= 1; d21=1; d22=0;
P=ltisys(a,[b1 b2],[c1;c2],[d11 d12;d21 d22])
```

Note that the plant $P(s)$ is "singular" since $D_{12}=0$.

To determine the optimal H_{∞} performance over stabilizing control laws $u=K(s) y$, type

```
gopt = hinfric(P,[ll 1])
```

where the second argument [11] specifies the numbers of measurements and controls (lengths of the vectors y and u). The γ-iterations performed by hinfric are displayed on the screen as follows:

```
    Gamma-Iteration:
Gamma Diagnosis
10.0000 : feasible
1.0000 : infeasible (Y is not positive semi-definite)
5.5000 : feasible
3.2500 : feasible
2.1250 : feasible
1.5625 : feasible
1.2812 : feasible
1.1406 : feasible
1.0703 : feasible
1.0352 : feasible
1.0176 : feasible
1.0088 : feasible
Best closed-loop gain (GAMMA_OPT): 1.008789
```

The optimal H_{∞} performance for $P(s)$ is therefore approximately 1 . For each tested value of γ, hinfric gives a feasible/infeasible diagnosis as well as the cause for infeasibility when applicable.
Alternatively, you can use the LMI-based function hinflmi with the same syntax:

```
gopt = hinflmi(P,[1 1])
```

This function optimizes the H_{∞} performance using mincx:

```
    Minimization of gamma:
    Solver for linear objective minimization under LMI constraints
    Iterations : Best objective value so far
    1 2.196542
    new lower bound: 0.571370
        1.381964
        3 1.381964
        4 1.094665
        5 1.052469
        6 1.008499
        7 1.008499
        8 1.008499
    new lower bound: 0.656673
        9 1.002517
    new lower bound: 0.878172
        1.002517
    new lower bound: 0.982223
        1.002517
    new lower bound: 0.993382
Result:feasible solution of required accuracy
    best objective value: 1.002517
    guaranteed relative accuracy: 9.11e 03
    f-radius saturation: 0.018% of R = 1.00e+08
```

The value displayed in the second column is the current best estimate of γ_{opt}. The optimal value 1.0025 approximately matches the value found by hinfric.
When a second output argument is provided, these two functions also return an optimal H_{∞} controller $K(s)$:
[gopt,K] = hinfric(P,[1 1])

The output K is the SYSTEM matrix of $K(s)$. To compute a suboptimal H_{∞} controller with guaranteed performance $\gamma<10$, type

$$
[g, K]=\operatorname{hinfric}\left(P,\left[\begin{array}{ll}
1 & 1], 10,10)
\end{array}\right.\right.
$$

In this case only the value $\gamma=10$ is tested. In the LMI approach, the same problem is solved by the command

$$
[g, K]=\operatorname{hinflmi}\left(P,\left[\begin{array}{ll}
1 & 1], 10)
\end{array}\right.\right.
$$

Finally, the syntax

$$
[g, k, x 1, x 2, y 1, y 2]=\operatorname{hinfric}(P,[1,1], 10,10)
$$

also returns the stabilizing solutions $X_{\infty}=x 2 / x 1$ and $Y_{\infty}=y 2 / \mathrm{y} 1$ of the H_{∞} Riccati equations for $\gamma=10$. Similarly,

$$
[g, k, x 1, x 2, y 1, y 2]=\operatorname{hinflmi}(P,[1,1], 10)
$$

returns solutions $\mathrm{X}=\mathrm{x} 2 / \mathrm{x} 1$ and $\mathrm{Y}=\mathrm{y} 2 / \mathrm{y} 1$ of the H_{∞} Riccati inequalities. Equivalently, $R=\mathrm{x} 1$ and $S=\mathrm{y} 1$ are solutions of the characteristic LMIs (5-2)-(5-4) since $\times 2$ and y2 are always set to $g \times I$. Further options and control parameters are discussed in the "Command Reference" chapter.

Finally, the counterpart of these functions for discrete-time H_{∞} synthesis are called dhinfric, dhinflmi, and dnorminf and follow the exact same syntax.

Validation of the Closed-Loop System

Given the H_{∞} controller K computed by hinfric or hinflmi, the closed-loop mapping represented in Figure 5-4 is formed with the function slft:

Figure 5-4: Closed-loop system

Closed-loop stability is then checked by inspecting the closed-loop poles with spol
spol(clsys)
while the closed-loop RMS gain from w to z is computed by

```
norminf(clsys)
```

You can also plot the time- and frequency-domain responses of the closed- loop clsys with splot.

Finally, hinfpar extracts the state-space matrices A, B_{1}, \ldots from the plant SYSTEM matrix P:

$$
[a, b 1, b 2, c 1, c 2, d 11, d 12, d 21, d 22]=\text { hinfpar }(P, r)
$$

Set the second argument r to [p2 m2] if $D_{22} \in \mathbf{R}^{p_{2} \times m_{2}}$.

Multi-Objective H_{∞} Synthesis

In many real-world applications, standard H_{∞} synthesis cannot adequately capture all design specifications. For instance, noise attenuation or regulation against random disturbances are more naturally expressed in LQG terms. Similarly, pure H_{∞} synthesis only enforces closed-loop stability and does not allow for direct placement of the closed-loop poles in more specific regions of the left-half plane. Since the pole location is related to the time response and transient behavior of the feedback system, it is often desirable to impose additional damping and clustering constraints on the closed-loop dynamics. This makes multi-objective synthesis highly desirable in practice, and LMI theory offers powerful tools to attack such problems.

Mixed H_{2} / H_{∞} synthesis with regional pole placement is one example of multi-objective design addressed by the LMI Control Toolbox. The control problem is sketched in Figure 5-5. The output channel z_{∞} is associated with the H_{∞} performance while the channel z_{2} is associated with the LQG aspects (H_{2} performance).

Denoting by $T_{\infty}(s)$ and $T_{2}(s)$ the closed-loop transfer functions from w to z_{∞} and z_{2}, respectively, we consider the following multi-objective synthesis problem:

Figure 5-5: Multi-objective \boldsymbol{H}_{∞} synthesis
Design an output-feedback controller $u=K(s) y$ that

- Maintains the H_{∞} norm of $T_{\infty}(s)$ (RMS gain) below some prescribed value $\gamma_{0}>0$
- Maintains the H_{2} norm of $T_{2}(s)$ (LQG cost) below some prescribed value $v_{0}>0$
- Minimizes a trade-off criterion of the form

$$
\alpha\left\|T_{\infty}\right\|_{\infty}^{2}+\beta\left\|T_{2}\right\|_{2}^{2}
$$

with α Š 0 and $\beta \geq 0$

- Places the closed-loop poles in some prescribed LMI region D

Recall that LMI regions are general convex subregions of the open left-half plane (see "Pole Placement in LMI Regions" on page 4-5 for details).

LMI Formulation

Let

$$
\left\{\begin{aligned}
\dot{x} & =A x+B_{1} w+B_{2} u \\
z_{\infty} & =C_{\infty} x+D_{\infty 1} w+D_{\infty 2} u \\
z_{2} & =C_{2} x+D_{21} w+D_{22} u \\
y & =C_{y} x+D_{y 1} w
\end{aligned}\right.
$$

and

$$
\left\{\begin{array}{c}
\dot{\zeta}=A_{K \zeta}+B_{K y} \\
\dot{u}=C_{K \zeta}+D_{K y}
\end{array}\right.
$$

be state-space realizations of the plant $P(s)$ and controller $K(s)$, respectively, and let

$$
\left\{\begin{aligned}
\dot{x}_{c l} & =A_{c l} x_{c l}+B_{c l} w \\
z_{\infty} & =C_{c l 1} x_{c l}+D_{c l 1} w \\
z_{2} & =C_{c l 2} x_{c l}+D_{c l 2} w
\end{aligned}\right.
$$

be the corresponding closed-loop state-space equations.
Our three design objectives can be expressed as follows:

- H_{∞} performance: the closed-loop RMS gain from w to z_{∞} does not exceed γ if and only if there exists a symmetric matrix X_{∞} such that

$$
\begin{aligned}
\left(\begin{array}{ccc}
A_{c l} \chi_{\infty}+\chi_{\infty} A_{c l}^{T} & B_{c l} & X_{\infty} C_{c l 1}^{T} \\
B_{c l}^{T} & -I & D_{c l 1}^{T} \\
C_{c l 1} \chi_{\infty} & D_{c l 1} & -\gamma^{2} I
\end{array}\right) & <0 \\
&
\end{aligned}
$$

- H_{2} performance: the H_{2} norm of the closed-loop transfer function from w to z_{2} does not exceed v if and only if $D_{c l 2}=0$ and there exist two symmetric matrices χ_{2} and Q such that

$$
\begin{aligned}
&\left(\begin{array}{cc}
A_{c l} \chi_{2}+\chi_{2} A_{c l}^{T} B_{c l} \\
B_{c l}^{T} & -I
\end{array}\right)<0 \\
&\left(\begin{array}{cc}
Q & C_{c l 2} \chi_{2} \\
\chi_{2} C_{c l 2}^{T} & \chi_{2}
\end{array}\right)>0
\end{aligned}
$$

$$
\operatorname{Trace}(Q)<v^{2}
$$

- Pole placement: the closed-loop poles lie in the LMI region

$$
D=\left\{z \in \mathbf{C}: L+M z+M^{T} \bar{z}<0\right\}
$$

with $L=L^{T}=\left\{\lambda_{i j}\right\}_{1 \leq i, j \leq m}$ and $\mathrm{M}=\left[\mu_{i j}\right]_{1 \leq i, j \leq m}$ if and only if there exists a symmetric matrix $\chi_{\text {pol }}$ satisfying

$$
\begin{aligned}
& {\left[\lambda_{i j} \chi_{p o l}+\mu_{i j} A_{c l} \chi_{p o l}+\mu_{j i} X_{p o l} A_{c l}^{T}\right]_{1 \leq i, j \leq m}<0 } \\
& \chi_{p o l}>0
\end{aligned}
$$

For tractability in the LMI framework, we must seek a single Lyapunov matrix

$$
\chi:=\chi_{\infty}=\chi_{2}=\chi_{\mathrm{pol}}
$$

that enforces all three sets of constraints. Factorizing χ as

$$
\chi=\chi_{1} \chi_{2}^{-1}, \quad \chi_{1:=}\left(\begin{array}{cc}
R & I \\
M^{T} & 0
\end{array}\right), \quad \chi_{2}:=\left(\begin{array}{cc}
0 & S \\
I & N^{T}
\end{array}\right)
$$

and introducing the change of controller variables [3]:

$$
\left\{\begin{aligned}
B_{K} & :=N B_{K}+S B_{2} D_{K} \\
C_{K} & :=C_{K} M^{T}+D_{K} C_{y} R \\
A_{K} & :=N A_{K} M^{T}+N B_{K} C_{y} R+S B_{2} C_{K} M^{T}+S\left(A+B_{2} D_{K} C_{y}\right) R,
\end{aligned}\right.
$$

the inequality constraints on χ are readily turned into LMI constraints in the variables $R, S, Q, A_{K}, B_{K}, C_{K}$, and $D_{K}[8,1]$. This leads to the following suboptimal LMI formulation of our multi-objective synthesis problem:

Minimize $\alpha \gamma^{2}+\beta \operatorname{Trace}(Q)$ over $R, S, Q, A_{K}, B_{K}, C_{K}, D_{K}$, and γ^{2} satisfying:

$$
\begin{aligned}
& \left(\begin{array}{cccc}
A R+R A^{T}+B_{2} C_{K}+C_{K}^{T} B_{2}^{T} & A_{K}^{T}+A+B_{2} D_{K} C_{y} & B_{1}+B_{2} D_{K} D_{y 1} & H \\
H & A^{T} S+S A+B_{K} C_{y}+C_{y}^{T} B_{K}^{T} & S B_{1}+B_{K} D_{y 1} & H \\
H & H & -I & H \\
C_{\infty} R+D_{\infty 2} C_{K} & C_{\infty}+D_{\infty 2} D_{K} C_{y} & D_{\infty 1}+D_{\infty 2} D_{K} D_{y 1}-\gamma^{2} I
\end{array}\right)<0 \\
& \left(\begin{array}{ccc}
Q & C_{2} R+D_{22} C_{K} C_{2}+D_{22} D_{K} C_{y} \\
H & R & I \\
H & I & S
\end{array}\right)>0 \\
& {\left[\lambda_{i j}\left(\begin{array}{cc}
R & I \\
I & S
\end{array}\right)+\mu_{i j}\left(\begin{array}{cc}
A R+B_{2} C_{K} A+B_{2} D_{K} C_{y} \\
A_{K} & S A+B_{K} C_{y}
\end{array}\right)+\right.} \\
& \left.\mu_{j i}\left(\begin{array}{cc}
R A^{T}+C_{K}^{T} B_{2}^{T} & A_{K}^{T} \\
\left(A+B_{2} D_{K} C_{y}\right)^{T} A^{T} S+C_{y}^{T} B_{K}^{T}
\end{array}\right)\right]_{1 \leq i, j \leq m}<0 \\
& \text { Trace } Q<\nu_{0}^{2} \\
& D_{21}+D_{22} D_{K} D_{y 1}=0
\end{aligned}
$$

Given optimal solutions γ^{*}, Q^{*} of this LMI problem, the closed-loop H_{∞} and H_{2} performances are bounded by

$$
\left\|T_{\infty}\right\|_{\infty} \leq \gamma^{*}, \quad\left\|T_{2}\right\|_{2} \leq \sqrt{\operatorname{Trace}\left(Q^{*}\right)}
$$

The Function hinfmix

The function hinfmix implements the LMI approach to mixed H_{2} / H_{∞} synthesis with regional pole placement described above. Its syntax is

```
[gopt,h2opt,K,R,S] = hinfmix(P,r,obj,region)
```

where

- P is the SYSTEM matrix of the LTI plant $P(s)$. Note that z_{2} or z_{∞} can be empty, or even both when performing pure pole placement
- r is a three-entry vector listing the lengths of z_{2}, y, and u
- obj $=\left[\gamma_{0}, v_{0}, \alpha, \beta\right]$ is a four-entry vector specifying the H_{2} / H_{∞} constraints and criterion
- region specifies the LMI region for pole placement, the default being the open left-half plane. Use lmireg to interactively generate the matrix region.

The outputs gopt and h2opt are the guaranteed H_{∞} and H_{2} performances, K is the controller SYSTEM matrix, and R, S are optimal values of the variables R, S (see "LMI Formulation" on page 5-16).

You can perform the following mixed and unmixed designs by setting obj appropriately:

obj	Corresponding Design				
[00cll	pole placement only				
$\left[\begin{array}{llll}0 & 0 & 1 & 0\end{array}\right]$	H_{∞}-optimal design				
$\left[\begin{array}{lllll}0 & 0 & 0 & 1\end{array}\right]$	H_{2}-optimal design				
[$\left.\begin{array}{lllll}\mathrm{g} & 0 & 0 & 1\end{array}\right]$	minimize $\left\\|T_{2}\right\\|_{2}$ subject to $\left\\|T_{\infty}\right\\|_{\infty}<\mathrm{g}$				
$\left[\begin{array}{llll}0 & h & 1 & 0\end{array}\right]$	minimize $\left\\|T_{\infty}\right\\|_{\infty}$ subject to $\left\\|T_{2}\right\\|_{2}<\mathrm{h}$				
[0 0 a b]	$\operatorname{minimize~} \mathrm{a}\left\\|T_{\infty}\right\\|_{0}^{2}+\mathrm{b}\left\\|T_{2}\right\\|_{2}^{2}$				
[g h a b]	most general problem				

Loop-Shaping Design with hinfmix

In the loop-shaping context (see next chapter), the closed-loop poles also include the poles of the shaping filters. Since these poles are not affected by the
controller, they impose hard limitations on achievable closed-loop clustering objectives. In particular, shaping filters with modes close to the imaginary axis will doom any attempt to push the closed-loop modes into a well-damped region.

When the purpose of such filters is to enforce integral control action, you can eliminate this difficulty by moving the integrator from the shaping filter to the control loop itself. This amounts to reparametrizing the controller as

$$
K(s)=\frac{1}{s} \tilde{K}(s)
$$

and performing the synthesis for \tilde{K}. An example can be found at the end of Chapter 6.

References

[1] Chilali, M., and P. Gahinet, " H_{∞} Design with Pole Placement Constraints: an LMI Approach," to appear in IEEE Trans. Aut. Contr., 1995.
[2] Doyle, J.C., Glover, K., Khargonekar, P., and Francis, B., "State-Space Solutions to Standard H_{2} and H_{∞} Control Problems," IEEE Trans. Aut. Contr., AC-34 (1989), pp. 831-847.
[3] Gahinet, P., "Explicit Controller Formulas for LMI-based H_{∞} Synthesis," submitted to Automatica. Also in Proc. Amer. Contr. Conf., 1994, pp. 23962400.
[4] Gahinet, P., and P. Apkarian, "A Linear Matrix Inequality Approach to H_{∞} Control," Int. J. Robust and Nonlinear Contr., 4 (1994), pp. 421-448.
[5] Gahinet, P., and A.J. Laub, "Reliable Computation of $\gamma_{\text {opt }}$ in Singular H_{∞} Control," to appear in SIAM J. Contr. Opt., 1995. Also in Proc. Conf. Dec. Contr., Lake Buena Vista, Fl., 1994, pp. 1527-1532.
[6] Iwasaki, T., and R.E. Skelton, "All Controllers for the General H_{∞} Control Problem: LMI Existence Conditions and State-Space Formulas," Automatica, 30 (1994), pp. 1307-1317.
[7] Scherer, C., " H_{∞} Optimization without Assumptions on Finite or Infinite Zeros," SIAM J. Contr. Opt., 30 (1992), pp. 143-166.
[8] Scherer, C., "Mixed $H_{2} H_{\infty}$ Control," to appear in Trends in Control: A European Perspective, volume of the special contributions to the ECC 1995.

Loop Shaping

The Loop-Shaping Methodology 6-2
The Loop-Shaping Methodology 6-3
Design Example 6-5
Specification of the Shaping Filters 6-10
Nonproper Filters and sderiv 6-12
Specification of the Control Structure 6-14
Controller Synthesis and Validation 6-16
Practical Considerations 6-18
Loop Shaping with Regional Pole Placement 6-19
References 6-24

The Loop-Shaping Methodology

Loop shaping is a popular technique for combining specifications such as tracking performance, bandwidth, disturbance rejection, roll-off, robustness to model uncertainty, gain limitation, etc. In this frequency domain method, the design specifications are reflected as gain constraints on the various closed-loop transfer functions.

Loop-shaping design involves four steps:
1 Express the design specifications as constraints on the gain response of the closed-loop transfer functions. This defines ideal gain profiles called loop shapes.

2 Specify the desired loop shapes graphically with the GUI magshape.
3 Specify the control structure, i.e., how the feedback loop is organized and which input/output transfer functions are relevant to the loop-shaping objectives.

4 Perform a standard H_{∞} synthesis on the resulting control structure to compute an adequate controller.

This chapter contains a tutorial introduction to the loop-shaping methodology as well as the available tools for loop-shaping design.

The Loop-Shaping Methodology

Loop shaping is a design procedure to formulate frequency-domain specifications as H_{∞} constraints and standard H_{∞} synthesis problems. In loop-shaping design, the performance and robustness specifications are first expressed in terms of loop shapes, i.e., of desired gain responses for the various closed-loop transfer functions. These shaping objectives are then turned into uniform H_{∞} bounds by means of shaping filters, and standard H_{∞} synthesis algorithms are applied to compute an adequate controller.

To get a feeling for the loop-shaping methodology, consider the MIMO tracking loop of Figure 6-1 and suppose that we want to design a controller with integral behavior. This requirement is naturally expressed in terms of the open-loop response $G K(s)$, for instance by a gain constraint of the form

Figure 6-1: Simple tracking loop
Here the main closed-loop transfer functions are:

- The sensitivity function $S=(I+G K)^{-1}$ (the transfer function from r to e)
- The complementary sensitivity function $T=G K(I+G K)^{-1}$ (the transfer function from r to y).

To express the open-loop specification (6-1) in terms of these closed-loop transfer functions, observe that $\sigma_{\min }(G K(j \omega)) \approx 1 / \sigma_{\max }(S(j \omega))$ whenever the open-loop gain is large, i.e., $\sigma_{\min }(G K(j \omega)) \gg 1$. Thus, $(6-1)$ is equivalent to requiring that

$$
\begin{equation*}
\sigma_{\max }(S(j \omega))<\omega \text { for } \omega \ll 1 \tag{6-2}
\end{equation*}
$$

To turn this frequency-dependent gain constraint into a normalized H_{∞} bound, a useful tool is the notion of shaping filter. Shaping filters are rational filters whose magnitude plot reflects the desired loop shape. Here for instance, the shaping filter

$$
W(s)=\frac{1}{s} I_{2}
$$

can be used to normalize the constraint (6-2) to

$$
\begin{equation*}
\|W(s) S(s)\|_{\infty}<1 \tag{6-3}
\end{equation*}
$$

Indeed, (6-3) is equivalent to

$$
\frac{1}{\omega}<\sigma_{\min }(1+G K(j \omega)) \text { for all } \omega,
$$

which in turn constrains $G K$ to

$$
\sigma_{\min }(G K(j \omega))>\frac{1}{\omega}-1 \approx \frac{1}{\omega} \text { for } \omega \ll 1
$$

Likewise, roll-off requirements on $G K(j \omega)$ are enforced by H_{∞} bounds of the form

$$
\|W(s) T(s)\|_{\infty}<1
$$

where $W(s)$ is some appropriate high-pass filter. This reformulation is rooted in the approximation $\sigma_{\max }(G K(j \omega)) \approx \sigma_{\max }(T(j \omega))$ valid whenever the open-loop gain is small, i.e., $\sigma_{\max }(G K(j \omega)) \ll 1$. Such constraints are also associated with robust stability in the face of plant uncertainty of the form $G(s)=(I+\Delta(s)) G_{0}(s)$ where Δ satisfies the frequency-dependent bound

$$
\sigma_{\max }(\Delta(j \omega))<|\mathrm{W}(j \omega)|
$$

Finally, shaping filters are useful to incorporate information about the spectral density of exogenous signals such as disturbances or measurement noise (see "Example 5.1" on page 5-4).

Design Example

Loop shaping design with the LMI Control Toolbox involves four steps:
1 Express the design specifications in terms of loop shapes and shaping filters.
2 Specify the shaping filters by their magnitude profile. This is done interactively with the graphical user interface magshape.

3 Specify the control loop structure with the functions sconnect and smult, or alternatively with Simulink.

4 Solve the resulting H_{∞} problem with one of the H_{∞} synthesis functions.

A simple tracking problem is used to illustrate this design procedure. Type radardem to run the corresponding demo.

Example 6.1. Figure 6-2 shows a simplified mechanical model of a radar antenna. The stiffness K accounts for flexibilities in the coupling between the motor and the antenna.

The corresponding nominal transfer function from the motor torque $u=T$ to the angular velocity $y=\dot{\theta}_{a}$ of the antenna is

$$
G_{0}(s)=\frac{30000}{(s+0.02)\left(s^{2}+0.99 s+30030\right)}
$$

Our goal is to control $\dot{\theta}_{a}$ through the torque T. The control structure is the tracking loop of Figure 6-3 where the dynamical uncertainty $\Delta(s)$ accounts for neglected high-frequency dynamics and flexibilities.

Figure 6-2: Second-order model of a radar antenna
The design specifications are as follows:
(i)integral control action, open-loop gain of at least 30 dB at $1 \mathrm{rad} / \mathrm{s}$, and bandwidth of at least $10 \mathrm{rad} / \mathrm{s}$,
(ii) 99% rejection of output disturbances d with spectral density in $[0,1] \mathrm{rad} / s$, (iii)robustness against the neglected high-frequency dynamics represented by the multiplicative model uncertainty $\Delta(s)$. A bound on $|\Delta(j \omega)|$ determined from experimental data is given in Figure 6-4.

Figure 6-3: Velocity loop for the radar antenna

Figure 6-4: Empirical bound on the uncertainty $\Delta(s)$
We first convert these specifications into RMS gain constraints by means of shaping filters. While the performance requirement (i) amounts to a lower bound on the open-loop gain, the disturbance rejection target (ii) imposes $|S(j \omega)|<0.01$ for $\omega<1 \mathrm{rad} / s$. Both requirements can be combined into a single constraint

$$
\begin{equation*}
\left\|W_{1}(s) S(s)\right\|_{\infty}<1 \tag{6-4}
\end{equation*}
$$

where $S=1=\left(1+G_{0} K\right)$ and $W_{1}(s)$ is a low-pass filter whose gain lies above the shaded region in Figure 6-5. From the small gain theorem [2], robust stability in the face of the uncertainty $\Delta(s)$ is equivalent to

$$
\begin{equation*}
\left\|W_{2}(s) T(s)\right\|_{\infty}<1 \tag{6-5}
\end{equation*}
$$

where $T=G_{0} K=\left(1+G_{0} K\right)$ and W_{2} is a high pass filter whose gain follows the profile of Figure 6-4.

For tractability in the H_{∞} framework, (6-4)-(6-5) are replaced by the single RMS gain constraint

$$
\| \begin{aligned}
& W_{1} S \\
& W_{2} T \|_{\infty}<1 .
\end{aligned}
$$

Figure 6-5: Magnitude profile for $W_{1}(s)$
The transfer function $\binom{W_{1} S}{W_{2} T}$
maps r to the signals \tilde{e}, \tilde{y} in the control loop of Figure 6-6. Hence our original design problem is equivalent to the following H_{∞} synthesis problem:

Find a stabilizing controller $K(s)$ that makes the closed-loop RMS gain from r to $\binom{\tilde{e}}{\tilde{y}}$ less than one.

Figure 6-6: Control structure
To perform this H_{∞} synthesis, we need to
1 Compute two shaping filters $W_{1}(s)$ and $W_{2}(s)$ whose magnitude responses match the profiles of Figures 6-5 and 6-4.

2 Specify the control structure of Figure 6-6 and derive the corresponding plant.

3 Call one of the H_{∞}-optimization functions to compute an adequate controller $K(s)$ for this plant.

The next three sections discuss these steps.

Specification of the Shaping Filters

The graphical user interface magshape allows you to specify shaping filters directly by their magnitude profile. Typing magshape brings up the worksheet shown in Figure 6-7. To construct the two shaping filters $W_{1}(s)$ and $W_{2}(s)$ involved in our problem:

1 Type w1, w2 after the prompt Filter names. This tells magshape to write the filter SYSTEM matrices in MATLAB variables called $w 1$ and $w 2$.

2 Indicate which filter you are about to specify by clicking on the corresponding button on the right-hand side of the window.

3 Click on the add point button: you can now specify the desired magnitude profile with the mouse. This profile is sketched with a few characteristic points marking the asymptotes and the slope changes. Clicking on the delete point or move point buttons allows you to delete or move particular points.

4 Once the desired profile is sketched, specify the filter order and click the fit data button to interpolate the data points by a rational filter. The gain of the resulting filter appears in solid on the plot, and its realization is written in the MATLAB variable of the same name. To make adjustments, you can move some of the points or change the filter order, and then redo the fitting.

5 If w1 is used as a filter name, magshape checks if a SYSTEM matrix of the same name already exists in the MATLAB environment. When this is the case, its magnitude plot is drawn when the w1 button is clicked. This is useful to load existing filters in the magshape window for modification or comparison.

Figure 6-7 is a snapshot of the magshape window after specifying the profiles of W_{1} and W_{2} and fitting the data points (marked by o in the plot). The solid lines show the rational fits obtained with an order 3 for W_{1} and an order 1 for W_{2}.

The transfer functions of these filters (as given by ltitf(w1) and ltitf(w2)) are approximately

$$
\begin{aligned}
& W_{1}(s)=\frac{0.64 s^{3}+10.45 s^{2}+149.28 s+25.87}{s^{3}+1.20 s^{2}+0.83 s+8.31 \times 10^{-4}} \\
& W_{2}(s)=100 \frac{3.41 s+217.75}{s+3.54 \times 10^{4}}
\end{aligned}
$$

Note that horizontal asymptotes have been added in both filters. Such asymptotes prevent humps in S and T near the crossover frequency, thus reducing the overshoot in the step response.

The function magshape always returns stable and proper filters. If you do not use magshape to generate your filters, make sure that they are stable with poles sufficiently far from the imaginary axis. To avoid difficulties in the subsequent H_{∞} optimization, their poles should satisfy

$$
\operatorname{Re}(s) \leq-10^{-3}
$$

Figure 6-7: The magshape interface

Nonproper Filters and sderiv

To impose a given roll-off rate in the open-loop response, it is often desirable to use nonproper shaping filters, i.e., filters with a derivative action in the high-frequency range. Because such filters cannot be represented in SYSTEM matrix form, magshape approximates them by high-pass filters. A drawback of this approximation is the introduction of fast parasitic modes in the filter and augmented plant realizations, which in turn may cause numerical difficulties.

Alternatively, you can use sderiv to include nonproper shaping filters in the loop-shaping criterion. This function appends a SISO proportional-derivator
component $n s+d$ to selected inputs and/or outputs of a given LTI system. For instance, the interconnection

is specified by

$$
P d=\operatorname{sderiv}\left(P,\left[\begin{array}{ll}
1 & 2],\left[\begin{array}{ll}
0.01 & 1]
\end{array}\right) .
\end{array}\right.\right.
$$

In the calling list, [112$]$ lists the input and output channels to be filtered by $n s+d$ (here 1 for "first input" and 2 for "second output") and the vector [0.01 1] lists the values of n and d. An error is generated if the resulting system Pd is not proper.

To specify more complex nonproper filters,
1 Specify the proper "low-frequency" part of the filters with magshape.
2 Augment the plant with these low-pass filters.
3 Add the derivative action of the nonproper filters by applying sderiv to the augmented plant.

This procedure is illustrated in the design example presented in "Loop Shaping with Regional Pole Placement" on page 6-19.

Specification of the Control Structure

To perform the H_{∞} synthesis, the control structure of Figure 6-6 must be put in the standard linear-fractional form of Figure 6-8. In this equivalent representation, $P(s)$ is the nominal plant determined by $G_{0}(s)$ and the control structure, and $P_{\text {aug }}(s)$ is the augmented plant obtained by appending the shaping filters $W_{1}(s)$ and $W_{2}(s)$. While the H_{∞} synthesis is performed on $P_{\text {aug }}(s)$, the physical closed-loop transfer functions from r to e and y are fully specified by $P(s)$ and $K(s)$ (recall that the shaping filters are not part of the physical control loop).

Figure 6-8: Equivalent standard \mathbf{H}_{∞} problem
The function sconnect computes the SYSTEM matrices of $P(s)$ or $P_{\text {aug }}(s)$ given G_{0}, W_{1}, W_{2}, and the qualitative description of the control structure (Figure 6-6). With this function, general control structures are described by listing the input and output signals and by specifying the input of each dynamical system. In our problem, the plant $P(s)$ corresponding to the control loop

is specified by

```
g0 = ltisys('tf',3e4,conv([1.02],[1.99 3.03e4]))
P = sconnect('r(1)','e=r-G0 ; GO','K:e','G0:K',g0)
```

The ltisys command returns a state-space realization of $G_{0}(s)$. In the sconnect command, the input arguments are strings or SYSTEM matrices specifying the control structure as follows:

- The first argument ' $r(1)$ ' lists and dimensions the input signals. Here the only input is the scalar reference signal r.
- The second argument 'e=r-GO ; GO' lists the two output signals separated by a semicolon. Outputs are defined as combinations of the input signals and the outputs of the dynamical systems. For instance, the first output e is specified as r minus the output y of G_{0}. For systems with several outputs, the syntax GO ([1, 3:4]) would select the first, third, and fourth outputs.
- The third argument ' $\mathrm{K}: \mathrm{e}$ ' names the controller and specifies its inputs. A two-degrees-of-freedom controller with inputs e and r would be specified by 'K: e; r'.
- The remaining arguments come in pairs and specify, for each known LTI system in the loop, its input list and its SYSTEM matrix. Here ' GO: K' means that the input of G_{0} is the output of K, and $g 0$ is the SYSTEM matrix of $G_{0}(s)$.

You can give arbitrary names to G_{0} and K in the string definitions, provided that you use the same names throughout.

Similarly, the augmented plant $P_{\text {aug }}(s)$ corresponding to the loop of Figure 6-6 would be specified by

```
Paug = sconnect('r(1)','W1;W2','K:e = r-GO','GO:K',g0,\ldots
'W1:e',w1, 'W2:GO',w2)
```

where w1 and w2 are the shaping filter SYSTEM matrices returned by magshape. However, the same result is obtained more directly by appending the shaping filters to $P(s)$ according to Figure 6-8:

```
Paug = smult(P,sdiag(w1,w2,1))
```

Finally, note that sconnect is also useful to compute the SYSTEM matrix of ordinary system interconnections. In such cases, the third argument should be set to [] to signal the absence of a controller.

Controller Synthesis and Validation

After forming the augmented plant $P_{\text {aug }}(s)$ with sconnect, it suffices to call hinfric or hinflmi to test whether the specifications are feasible and compute an adequate controller $K(s)$. The loop-shaping design is feasible if and only if the H_{∞} performance $\gamma=1$ is achievable for $P_{\text {aug }}$. With our choice of shaping filters, we obtain

```
[gopt,k] = hinfric(Paug,[1 1],1,1);
Gamma-Iteration:
Gamma Diagnosis
1.0000 : feasible
Best closed-loop gain (GAMMA_OPT): 1.000000
** regularizing D12 or D21 to compute K(s):
..
```

Hence the specifications are met by the controller k returned by hinfric. The last two lines indicate that the H_{∞} problem associated with $P_{\text {aug }}$ is singular and has been regularized.

To validate the controller k, you can form the open-loop response $G K$ by typing
gk $=\operatorname{slft}(k, g)$
or the closed-loop transfer function from r to e and y by typing

```
Pcl = slft(P,k)
```

The Bode diagram of $G K$ and the nominal step response are then plotted by

```
splot(gk,'bo')
splot(ssub(Pcl,1,2),'st')
```

In the second command, ssub ($\mathrm{Pcl}, 1,2$) selects the transfer function from r to y as a subsystem of Pcl. The step response with the controller computed above appears in Figure 6-9.

Figure 6-9: Step response of the closed-loop system

Practical Considerations

When the model $G_{0}(s)$ of the system has poles on the imaginary axis, loopshaping design often leads to "singular" H_{∞} problems with $j \omega$-axis zeros in the $(1,2)$ or $(2,1)$ blocks of $P_{\text {aug }}$. While immaterial in the LMI approach, j ω-axis zeros bar the direct use of standard Riccati-based synthesis algorithms [1]. The function hinfric automatically regularizes such problems by perturbing the A matrix of $P_{\text {aug }}$ to A $+\varepsilon I$ for some positive ε. The message

```
** jw-axis zeros of P12(s) regularized
```

or

```
** jw-axis zeros of P21(s) regularized
```

is then displayed to inform users of the presence of a singularity.
In doing so, however, hinfric shifts the shaping filter poles as part of the poles of $P_{\text {aug. }}$. Since the shaping filters must remain stable for closed-loop stabilizability, the amount of regularization ε is thereby limited. When some shaping filters have modes close to the $j \omega$-axis, this is likely to result in poor closed-loop damping because the central controller computed by hinfric tends, in such problems, to place closed-loop poles within ε of the $j \omega$-axis.
If this difficulty arises, a simple remedy consists of perturbing the poles of the plant $P(s)$ prior to appending the shaping filters. Provided that all poles of $G_{0}(s)$ are controllable and observable, this typically tolerates much larger ε, which in turn results in better closed-loop damping. In our example, this would amount to forming $P_{\text {aug }}$ as follows:

```
P = sconnect('r(1)','e=r-G0 ; GO','K:e','GO:K',g0)
% pre-regularization
[a,b,c,d] = ltiss(P)
a = a + reg * eye(size(a))
Preg = ltisys(a,b,c,d)
Paug = smult(Preg, sdiag(w1,w2,1))
```

Note that the regularization level reg should always be chosen positive. Finally, a careful validation of the resulting controller on the true plant P is necessary since the H_{∞} synthesis is performed on a perturbed system.

Loop Shaping with Regional Pole Placement

A weakness of the design outlined above is the plant inversion performed by the controller $K(s)$. Specifically, the resonant poles of $G(s)$ are cancelled by zeros of $K(s)$ as seen when comparing the magnitude plots of G and K (see Figure 6-10). Since such cancellations leave resonant modes in the closed-loop system, oscillatory responses may result when these modes are excited, e.g., by a disturbance at the plant input (see Figure 6-11).

There are several ways of circumventing this difficulty. One possible approach is to impose some minimum closed-loop damping via an additional regional pole placement constraint. In addition to avoiding cancellations, this is helpful to tune the transient responses and prevent fast controller dynamics.
Loop-shaping design with pole placement is addressed by the function hinfmix. As mentioned in the previous chapter, using hinfmix requires extra care because of possible interferences between the root clustering objective and the shaping filter poles. Indeed, recall that the "closed-loop" dynamics of the loop-shaping criterion always comprise the shaping filter modes.

Figure 6-10: Pole-zero cancellation between \boldsymbol{G} and \boldsymbol{K}

Figure 6-11: Response y for an impulse disturbance at the plant input
For "Example 6.1" on page 6-5, we chose as pole placement region the disk centered at $(-1000,0)$ and with radius 1000 . By inspection of the shaping filters used in the previous design, this region clashes with the pseudo-integrator in $W_{1}(s)$ and the fast pole at $s=-3.54 \times 10^{4}$ in $W_{2}(s)$. To alleviate this difficulty,

1 Remove the pseudo-integrator from $W_{1}(s)$ and move it to the main loop as shown in Figure 6-12. This defines an equivalent loop-shaping problem where the controller is reparametrized as $K(s)=K(s) / s$ and the integrator is now assignable via output feedback.

2 Specify $W_{2}(s)$ as a nonproper filter with derivative action. This is done with sderiv.

Figure 6-12: Modified control structure
A satisfactory design was obtained for the following values of W_{1} and W_{2} :

$$
W_{1}(s)=\frac{s^{2}+16 s+200}{s^{2}+1.2 s+0.8}, \quad W_{2}(s)=0.9+\frac{s}{200}
$$

A summary of the commands needed to specify the control structure and solve the constrained H_{∞} problem is listed below. Run the demo radardem to perform this design interactively.

```
% control structure, sint = integrator
sint = ltisys('tf',1,[1 0])
[P,r] = sconnect('r','Int;G','Kt:Int','G:Kt',GO,'Int:e=r-G',
sint)
% add w1
w1=ltisys('tf',[1 16 200],[1 1.2 0.8])
Paug = smult(P,sdiag(w1,1,1))
% add w2
Paug = sderiv(Paug,2,[1/200 0.9])
% interactively specify the region for pole placement
region = lmireg
% perform the H-infinity synthesis with pole placement
r = [llll
```

```
[gopt,xx,Kt] = hinfmix(Paug,r,[0}00 1 0],region
```

The full controller is then given by
K = smult(sint, Kt)

The resulting open-loop response and the time response to a step r and an impulse disturbance at the plant input appear in Figure 6-13 and 6-14. Note that the new controller no longer inverts the plant and that input disturbances are now rejected with satisfactory transient behavior.

Figure 6-13: Open-loop response $\mathbf{G K}(s)$

Figure 6-14: Transient behaviors with the new controller

References

[1] Doyle, J.C., Glover, K., Khargonekar, P., and Francis, B., "State-Space Solutions to Standard H_{2} and H_{∞} Control Problems," IEEE Trans. Aut. Contr., AC-34 (1989), pp. 831-847.
[2] Zames, G., "On the Input-Output Stability of Time-Varying Nonlinear Feedback Systems, Part I and II," IEEE Trans. Aut. Contr., AC-11 (1966), pp. 228-238 and 465-476.

Robust Gain-Scheduled Controllers

Gain-Scheduled Control 7-3
Synthesis of Gain-Scheduled $H \bullet$ Controllers 7-7
Simulation of Gain-Scheduled Control Systems 7-9
Design Example 7-10
References

Gain scheduling is a widely used technique for controlling certain classes of nonlinear or linear time-varying systems. Rather than seeking a single robust LTI controller for the entire operating range, gain scheduling consists in designing an LTI controller for each operating point and in switching controller when the operating conditions change.

This section presents systematic tools to design gain-scheduled H_{∞} controllers for linear parameter-dependent systems. These tools are applicable to time-varying and/or nonlinear systems whose linearized dynamics are reasonably well approximated by affine parameter-dependent models.

Gain-Scheduled Control

The synthesis technique discussed below is applicable to affine parameter-dependent plants with equations

$$
P(., \mathrm{p})\left\{\begin{array}{l}
\dot{x}=A(p) x+B_{1}(p) w+B_{2} u \\
z=C_{1}(p) x+D_{11}(p) w+D_{12} u \\
y=C_{2} x+D_{21} w+D_{22} u
\end{array}\right.
$$

where

$$
p(t)=\left(p_{1}(t), \ldots, p_{n}(t)\right), \quad p i \leq p i(t) \leq \bar{p} i
$$

is a time-varying vector of physical parameters (velocity, angle of attack, stiffness,...) and $\mathrm{A}(\cdot), \mathrm{B}_{1}(\cdot), \mathrm{C}_{1}(\cdot), \mathrm{D}_{11}(\cdot)$ are affine functions of $p(t)$. This is a simple model of systems whose dynamical equations depend on physical coefficients that vary during operation. When these coefficients undergo large variations, it is often impossible to achieve high performance over the entire operating range with a single robust LTI controller. Provided that the parameter values are measured in real time, it is then desirable to use controllers that incorporate such measurements to adjust to the current operating conditions [4]. Such controllers are said to be scheduled by the parameter measurements. This control strategy typically achieves higher performance in the face of large variations in operating conditions. Note that $p(t)$ may include part of the state vector x itself provided that the corresponding states are accessible to measurement.

If the parameter vector $p(t)$ takes values in a box of \mathbf{R}^{n} with corners $\left\{\Pi_{i}\right\}_{i=1}^{N}\left(N=2^{n}\right)$, the plant SYSTEM matrix

$$
S(p):=\left(\begin{array}{c|cc}
A(p) & B_{1}(p) & B_{2} \\
\hline C_{1}(p) & D_{11}(p) & D_{12} \\
C_{2} & D_{21} & D_{22}
\end{array}\right)
$$

ranges in a matrix polytope with vertices $S\left(\Pi_{i}\right)$. Specifically, given any convex decomposition

$$
p(t)=\alpha_{1} \Pi_{1}+\ldots+\alpha_{N} \Pi_{N}, \quad \alpha_{i} \geq 0, \quad \sum_{i=1}^{N} \alpha_{i}=1
$$

of p over the corners of the parameter box, the SYSTEM matrix $S(p)$ is given by

$$
S(p)=\alpha_{1} S\left(\Pi_{1}\right)+\ldots+\alpha_{N} S\left(\Pi_{N}\right)
$$

This suggests seeking parameter-dependent controllers with equations

$$
K(., \mathrm{p})\left\{\begin{array}{c}
\zeta=A_{K}(p) \zeta+B_{K}(p) y \\
u=C_{K}(p) \zeta+D_{K}(p) y
\end{array}\right.
$$

and having the following vertex property:
Given the convex decomposition $p(t)=\sum_{i=1}^{v} \alpha_{i} \Pi_{i}$ of the current parameter value $p(t)$, the values of $A_{K}(p), B_{K}(p), \ldots$ are derived from the values $A_{K}\left(\Pi_{i}\right), B_{K}\left(\Pi_{i}\right), \ldots$ at the corners of the parameter box by

$$
\binom{A_{K}(p) B_{K}(p)}{C_{K}(p) D_{K}(p)}=\sum_{i=1}^{N} \alpha_{i}\binom{A_{K}\left(\Pi_{i}\right) B_{K}\left(\Pi_{i}\right)}{C_{K}\left(\Pi_{i}\right) D_{K}\left(\Pi_{i}\right)}
$$

In other words, the controller state-space matrices at the operating point $p(t)$ are obtained by convex interpolation of the LTI vertex controllers

$$
K_{i}:=\binom{A_{K}\left(\Pi_{i}\right) B_{K}\left(\Pi_{i}\right)}{C_{K}\left(\Pi_{i}\right) D_{K}\left(\Pi_{i}\right)}
$$

This yields a smooth scheduling of the controller matrices by the parameter measurements $p(t)$.

For this class of controllers, consider the following H_{∞}-like synthesis problem relative to the interconnection of Figure 7-1:

Figure 7-1: Gain-scheduled H_{∞} problem
Design a gain-scheduled controller $K(., p)$ satisfying the vertex property and such that

- The closed-loop system is stable for all admissible parameter trajectories $p(t)$
- The worst-case closed-loop RMS gain from w to z does not exceed some level $\gamma>0$.

Using the notion of quadratic H_{∞} performance to enforce the RMS gain constraint, and observing that the closed-loop system is a polytopic system, this synthesis problem can be reduced to the following LMI problem [3, 2]

Find two symmetric matrices R and S such that

$$
\left(\begin{array}{cc}
N_{12} & 0 \tag{7-1}\\
0 & I
\end{array}\right)^{T}\left(\begin{array}{ccc}
A_{i} R+R A_{i}^{T} & R C_{1 i}^{T} & B_{1 i} \\
C_{1 i} R & -\gamma I & D_{11 i} \\
B_{1}^{T} & D_{11 i}^{T} & -\gamma I
\end{array}\right)\left(\begin{array}{cc}
N_{12} & 0 \\
0 & I
\end{array}\right)<0, i=1, \ldots, N
$$

$$
\begin{gather*}
\left(\begin{array}{cc}
N_{21} & 0 \\
0 & I
\end{array}\right)^{T}\left(\begin{array}{ccc}
A_{i}^{T} S+S A & S B_{1 i} & C_{1 i}^{T} \\
B_{1 i}^{T} S & -\gamma I & D_{11 i}^{T} \\
C_{1 i} & D_{11 i} & -\gamma I
\end{array}\right)\left(\begin{array}{cc}
N_{21} & 0 \\
0 & I
\end{array}\right)<0, i=1, \ldots, N \tag{7-2}\\
\left(\begin{array}{cc}
R & I \\
I & S
\end{array}\right) \geq 0 \tag{7-3}
\end{gather*}
$$

where

$$
\left(\begin{array}{cc}
A_{i} & B_{1 i} \\
C_{1 i} & D_{11 i}
\end{array}\right):=\left(\begin{array}{cc}
A\left(\Pi_{i}\right) & B_{1}\left(\Pi_{i}\right) \\
C_{1}\left(\Pi_{i}\right) & D_{11}\left(\Pi_{i}\right)
\end{array}\right)
$$

and N_{12} and N_{21} are bases of the null spaces of $\left(\left(B_{2}^{T}, D_{12}^{T}\right)\right)$ and $\left(C_{2}, D_{21}\right)$, respectively.
Remark: Requiring the plant matrices $B_{2}, C_{2}, D_{12}, D_{21}$ to be independent of $p(t)$ may be restrictive in practice. When B_{2} and D_{12} depend on $p(t)$, a simple trick to enforce these requirements consists of filtering u through a low-pass filter with sufficiently large bandwidth. Appending this filter to the plant rejects the parameter dependence of B_{2} and D_{12} into the A matrix of the augmented plant. Similarly, parameter dependences in C_{2} and D_{21} can be eliminated by filtering the output (see [1] for details).

Synthesis of Gain-Scheduled H_{∞} Controllers

The synthesis of gain-scheduled H_{∞} controllers is performed by the function hinfgs. Since such controllers are characterized by their vertex values, both the plant and the controller are treated as polytopic models by hinfgs. The calling sequence is

```
[gopt,pdK] = hinfgs(pdP,r)
```

Here pdP is an affine or polytopic model of the plant (see psys) and the twoentry vector r specifies the dimensions of the D_{22} matrix (set $r=[p 2 \mathrm{~m} 2$] if $y \in \mathbf{R}^{p_{2}}$ and $u \in \mathbf{R}^{m_{2}}$).

On output, gopt is the best achievable RMS gain and pdK is the polytopic system consisting of the vertex controllers.

$$
\begin{aligned}
K_{i}=\left(\begin{array}{l}
A_{K}\left(\Pi_{i}\right) \\
C_{K}\left(\Pi_{i}\right) \\
C_{K}\left(\Pi_{i}\right) D_{K}\left(\Pi_{i}\right)
\end{array}\right) \\
K_{i}=\left(\begin{array}{c}
A_{K}\left(\Pi_{i}\right) B_{K}\left(\Pi_{i}\right) \\
C_{K}\left(\Pi_{i}\right) \\
D_{K}\left(\Pi_{i}\right)
\end{array}\right)
\end{aligned}
$$

Given any value p of the parameter vector $p(t)$, the corresponding state-space parameters

$$
K(p)=\left(\begin{array}{cc}
A_{K}(p) & B_{K}(p) \\
C_{K}(p) & D_{K}(p)
\end{array}\right)
$$

of the gain-scheduled controller are returned in SYSTEM matrix format by

```
c = polydec(pv,p)
Kp = psinfo(pdK,'eval',c)
```

The function polydec computes the convex decomposition $p(t)=\sum_{i=1}^{N} \alpha_{i} \Pi_{i}$ and returns $\mathrm{c}=\left(\alpha_{1}, \ldots, \alpha_{N}\right)$. The controller state-space data $K(p)=\sum_{i=1}^{N} \alpha_{i} K_{i}$ at time t is then computed by psinfo. Note that polydec ensures the continuity of the polytopic coordinates α_{i} as a function of p, thereby guaranteeing the continuity of the controller state-space matrices along parameter trajectories.

Given the polytopic controller representation pdK, a polytopic model of the closed-loop system is formed by

```
pcl = slft(pdP,pdK)
```

and evaluated for a given parameter value p of $p(t)$ by

```
pclt = psinfo(pcl,'eval',polydec(pv,p))
```


Simulation of Gain-Scheduled Control Systems

Being time-varying systems, gain-scheduled control systems cannot be simulated with splot. The function pdsimul is provided to simulate the time response of such systems along a given parameter trajectory.

With pdsimul, you must first define the parameter trajectory and the input signal as two functions of time with syntax $p=t r a j f u n(t)$ and $u=i n p u t f u n(t)$. You can then plot the corresponding time response by

```
pdsimul(pcl,'trajfun',tf,'inputfun')
```

where pcl is the polytopic representation of the closed-loop system and tf is the desired duration of the simulation. If 'inputfun' is omitted, the step response is plotted by default. See the next paragraph for an example.

Design Example

This example is drawn from [2] and deals with the design of a gain-scheduled autopilot for the pitch axis of a missile. Type misldem to run the corresponding demo.

The missile dynamics are highly dependent on the angle of attack α, the speed V, and the altitude H. These three parameters undergo large variations during operation. A simple model of the linearized dynamics of the missile is the parameter-dependent model

$$
G\left\{\begin{array}{l}
\binom{\dot{\alpha}}{\dot{q}}=\left(\begin{array}{cc}
-Z \alpha & 1 \\
-M \alpha & 0
\end{array}\right)\binom{\alpha}{q}+\binom{0}{1} \delta_{m} \tag{7-4}\\
\binom{a_{z v}}{q}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)\binom{\alpha}{q}
\end{array}\right.
$$

where $a_{z v}$ is the normalized vertical acceleration, q the pitch rate, δm the fin deflection, and Z_{α}, M_{α} are aerodynamical coefficients depending on α, V, and H. These two coefficients are "measured" in real time.

As V, H, and α vary in

$$
V \in[0.5,4] \text { Mach, } \quad H \in[0,18000] \mathrm{m}, \quad \alpha \in[0,40] \text { degrees }
$$

during operation, the coefficients Z_{α} and M_{α} range in

$$
Z_{\alpha} \in[0.5,4], \quad M_{\alpha} \in[0,106]
$$

Our goal is to control the vertical acceleration $a_{z v}$ over this operating range. The stringent performance specifications (settling time $<0.5 \mathrm{~s}$) and the bandwidth limitation imposed by unmodeled high frequency dynamics make gain scheduling desirable in this context.

The control structure is sketched in Figure 7-2. To enforce the performance and robustness requirements, we can use the loop-shaping criterion

$$
\left\|\begin{array}{c}
W_{1} S \tag{7-5}\\
W_{2} K S
\end{array}\right\|_{\infty}<1
$$

Note that $S=(I+G K)^{-1}$ is now a time-varying system and that the H_{∞} norm must be understood in terms of input/output RMS gain. Adequate shaping filters are derived with magshape as

$$
\begin{aligned}
& W_{1}(s)=\frac{2.01}{s+0.201} \\
& W_{2}(s)=\frac{9.678 s^{3}+0.029 s^{2}}{s^{3}+1.206 \times 10^{4} s^{2}+1.136 \times 10^{7} s+1.066 \times 10^{10}}
\end{aligned}
$$

Figure 7-2: Missile autopilot
The gain-scheduled controller synthesis parallels the standard loop-shaping procedure described in Chapter 6. First enter the parameter-dependent model (7-4) of the missile pitch axis by:

```
% parameter range:
Zmin=.5; Zmax=4; Mmin=0; Mmax=106;
pv = pvec('box',[Zmin Zmax ; Mmin Mmax])
% affine model:
s0 = ltisys([0 1;0 0],[0;1],[-1 0;0 1],[0;0])
s1 = ltisys([-1 0;0 0],[0;0],zeros(2),[0;0],0) % Z_al
s2 = ltisys([0 0;-1 0],[0;0],zeros(2),[0;0],0) % M_al
pdG = psys(pv,[s0 s1 s2])
```

For loop-shaping purposes, we must form the augmented plant associated with the criterion (7-5). This is done with sconnect and smult as follows:

```
% form the plant interconnection
[pdP,r] = sconnect('r','e=r-GP1;K','K:e;G(2)','G:K',pdG);
% append the shaping filters
Paug = smult(pdP,sdiag(w1,w2,eye(2)))
```

Note that pdP and Paug are polytopic models at this stage.
We are now ready to perform the gain-scheduled controller synthesis with hinfgs:

```
[gopt,pdK] = hinfgs(Paug,r)
gopt =
    0.205
```

Our specifications are achievable since the best performance $\gamma_{\text {opt }}=0.205$ is smaller than 1 , and the polytopic description of a controller with such performance is returned in pdK.
To validate the design, form the closed-loop system with

```
pCL = slft(pdP,pdK)
```

You can now simulate the step response of the gain-scheduled system along particular parameter trajectories. For the sake of illustration, consider the spiral trajectory

$$
\begin{aligned}
& Z_{\alpha}(t)=2.25+1.70 e^{-4 t} \cos (100 t) \\
& M_{\alpha}(t)=50+49 e^{-4 t} \sin (100 t)
\end{aligned}
$$

shown in Figure 7-3. After defining this trajectory is a function spiralt.m:

```
function p = spiral(t)
p = [2.25 + 1.70*exp(-4*t).*cos(100*t) ; ...
50 + 49* exp(-4*t).*sin(100*t)];
```

you can plot the closed-loop step response along $p(t)$ by

```
[t,x,y]=pdsimul(pCL,'spiralt',0.5)
plot(t,1-y(:,1))
```

The function pdsimul returns the output trajectories $y(t)=(\mathrm{e}(t), u(t))^{T}$ and the response $a_{z v}(t)$ is deduced by

$$
a_{z v}(t)=1-\mathrm{e}(t)
$$

The second command plots $a_{z v}(t)$ versus time as shown in Figure 7-4.

Figure 7-3: Parameter trajectory

Figure 7-4: Corresponding step response

References

[1] Apkarian, P., and P. Gahinet,"A Convex Characterization of Gain-Scheduled H_{∞} Controllers," to appear in IEEE Trans. Aut. Contr., 1995.
[2] Apkarian, P., P. Gahinet, and G. Becker, "Self-Scheduled H_{∞} Control of Linear Parameter-Varying Systems," to appear in Automatica, 1995.
[3] Becker, G., Packard, P., "Robust Performance of Linear Parametrically Varying Systems Using Parametrically Dependent Linear Feedback," Systems and Control Letters, 23 (1994), pp. 205-215.
[4] Packard, A., "Gain Scheduling via Linear Fractional Transformations," Syst. Contr. Letters, 22 (1994), pp. 79-92.

The LMI Lab

Background and Terminology 8-3
Overview of the LMI Lab 8-6
Specifying a System of LMIs 8-8
Retrieving Information 8-21
LMI Solvers 8-22
From Decision to Matrix Variables and Vice Versa 8-28
Validating Results 8-29
Modifying a System of LMIs 8-30
Advanced Topics 8-33
References 8-44

The LMI Lab is a high-performance package for solving general LMI problems. It blends simple tools for the specification and manipulation of LMIs with powerful LMI solvers for three generic LMI problems. Thanks to a structure-oriented representation of LMIs, the various LMI constraints can be described in their natural block-matrix form. Similarly, the optimization variables are specified directly as matrix variables with some given structure. Once an LMI problem is specified, it can be solved numerically by calling the appropriate LMI solver. The three solvers feasp, mincx, and gevp constitute the computational engine of the LMI Control Toolbox. Their high performance is achieved through C-MEX implementation and by taking advantage of the particular structure of each LMI.

The LMI Lab offers tools to

- Specify LMI systems either symbolically with the LMI Editor or incrementally with the lmivar and lmiterm commands
- Retrieve information about existing systems of LMIs
- Modify existing systems of LMIs
- Solve the three generic LMI problems (feasibility problem, linear objective minimization, and generalized eigenvalue minimization)
- Validate results

This chapter gives a tutorial introduction to the LMI Lab as well as more advanced tips for making the most out of its potential. The tutorial material is also covered by the demo lmidem.

Background and Terminology

Any linear matrix inequality can be expressed in the canonical form

$$
L(x)=L_{0}+x_{1} L_{1}+\ldots+x_{N} L_{N}<0
$$

where

- $L_{0}, L_{1}, \ldots, L_{N}$ are given symmetric matrices
- $x=\left(x_{1}, \ldots, x_{N}\right)^{T} \in \mathbf{R}^{N}$ is the vector of scalar variables to be determined. We refer to x_{1}, \ldots, x_{N} as the decision variables. The names "design variables" and "optimization variables" are also found in the literature.

Even though this canonical expression is generic, LMIs rarely arise in this form in control applications. Consider for instance the Lyapunov inequality

$$
\begin{equation*}
A^{T} X+X A<0 \tag{8-1}
\end{equation*}
$$

where $A=\left(\begin{array}{cc}-1 & 2 \\ 0 & -2\end{array}\right)$ and the variable $X=\left(\begin{array}{ll}x_{1} & x_{2} \\ x_{2} & x_{3}\end{array}\right)$ is a symmetric matrix.
Here the decision variables are the free entries x_{1}, x_{2}, x_{3} of X and the canonical form of this LMI reads

$$
x_{1}\left(\begin{array}{cc}
-2 & 2 \tag{8-2}\\
2 & 0
\end{array}\right)+x_{2}\left(\begin{array}{cc}
0 & -3 \\
-3 & 4
\end{array}\right)+x_{3}\left(\begin{array}{cc}
0 & 0 \\
0 & -4
\end{array}\right)<0
$$

Clearly this expression is less intuitive and transparent than (8-1). Moreover, the number of matrices involved in (8-2) grows roughly as $n^{2} / 2$ if n is the size of the A matrix. Hence, the canonical form is very inefficient from a storage viewpoint since it requires storing o($n^{2} / 2$) matrices of size n when the single n-by- n matrix A would be sufficient. Finally, working with the canonical form is also detrimental to the efficiency of the LMI solvers. For these various reasons, the LMI Lab uses a structured representation of LMIs. For instance, the expression $A^{T} X+X A$ in the Lyapunov inequality (8-1) is explicitly described as a function of the matrix variable X, and only the A matrix is stored.

In general, LMIs assume a block matrix form where each block is an affine combination of the matrix variables. As a fairly typical illustration, consider the following LMI drawn from H_{∞} theory

$$
N^{T}\left(\begin{array}{ccc}
A^{T} X+X A & X C^{T} & B \tag{8-3}\\
C X & -\gamma I & D \\
B^{T} & D^{T} & -\gamma I
\end{array}\right) N<0
$$

where A, B, C, D, N are given matrices and the problem variables are $X=X^{T} \in \mathbf{R}^{n \times n}$ and $\gamma \in \mathbf{R}$. We use the following terminology to describe such LMIs:

- N is called the outer factor, and the block matrix

$$
L(X, \gamma)=\left(\begin{array}{ccc}
A^{T} X+X A & X C^{T} & B \\
C X & -\gamma I & D \\
B^{T} & D^{T} & -\gamma I
\end{array}\right)
$$

is called the inner factor. The outer factor needs not be square and is often absent.

- X and γ are the matrix variables of the problem. Note that scalars are considered as 1-by-1 matrices.
- The inner factor $L(X, \gamma)$ is a symmetric block matrix, its block structure being characterized by the sizes of its diagonal blocks. By symmetry, $L(X, \gamma)$ is entirely specified by the blocks on or above the diagonal.
- Each block of $L(X, \gamma)$ is an affine expression in the matrix variables X and γ. This expression can be broken down into a sum of elementaryterm terms. For instance, the block $(1,1)$ contains two elementary terms: $A^{T} X$ and $X A$.
- Terms are either constant or variable. Constant terms are fixed matrices like B and D above. Variable terms involve one of the matrix variables, like $X A$, $X C^{T}$, and $-\gamma I$ above.

The LMI (8-3) is specified by the list of terms in each block, as is any LMI regardless of its complexity.

As for the matrix variables X and γ, they are characterized by their dimensions and structure. Common structures include rectangular unstructured, symmetric, skew-symmetric, and scalar. More sophisticated structures are sometimes encountered in control problems. For instance, the matrix variable X could be constrained to the block-diagonal structure

$$
X=\left(\begin{array}{c|cc}
x_{1} & 0 & 0 \\
\hline 0 & x_{2} & x_{3} \\
0 & x_{3} & x_{4}
\end{array}\right)
$$

Another possibility is the symmetric Toeplitz structure

$$
X=\left(\begin{array}{lll}
x_{1} & x_{2} & x_{3} \\
x_{2} & x_{1} & x_{2} \\
x_{3} & x_{2} & x_{1}
\end{array}\right)
$$

Summing up, structured LMI problems are specified by declaring the matrix variables and describing the term content of each LMI. This term-oriented description is systematic and accurately reflects the specific structure of the LMI constraints. There is no built-in limitation on the number of LMIs that can be specified or on the number of blocks and terms in any given LMI. LMI systems of arbitrary complexity can therefore, be defined in the LMI Lab.

Overview of the LMI Lab

The LMI Lab offers tools to specify, manipulate, and numerically solve LMIs. Its main purpose is to

- Allow for straightforward description of LMIs in their natural block-matrix form
- Provide easy access to the LMI solvers (optimization codes)
- Facilitate result validation and problem modification

The structure-oriented description of a given LMI system is stored as a single vector called the internal representation and generically denoted by LMISYS in the sequel. This vector encodes the structure and dimensions of the LMIs and matrix variables, a description of all LMI terms, and the related numerical data. It must be stressed that users need not attempt to read or understand the content of LMISYS since all manipulations involving this internal representation can be performed in a transparent manner with LMI-Lab tools.
The LMI Lab supports the following functionalities:

Specification of a System of LMIs

LMI systems can be either specified as symbolic matrix expressions with the interactive graphical user interface lmiedit, or assembled incrementally with the two commands lmivar and lmiterm. The first option is more intuitive and transparent while the second option is more powerful and flexible.

Information Retrieval

The interactive function lmiinfo answers qualitative queries about LMI systems created with lmiedit or lmivar and lmiterm. You can also use lmiedit to visualize the LMI system produced by a particular sequence of lmivar/lmiterm commands.

Solvers for LMI Optimization Problems

General-purpose LMI solvers are provided for the three generic LMI problems defined on page 1-5. These solvers can handle very general LMI systems and matrix variable structures. They return a feasible or optimal vector of decision variables x^{*}. The corresponding values $X_{1}^{*}, \ldots, X_{K}^{*}$ of the matrix variables are given by the function dec2mat.

Result Validation

The solution x^{*} produced by the LMI solvers is easily validated with the functions evallmi and showlmi. This allows a fast check and/or analysis of the results. With evallmi, all variable terms in the LMI system are evaluated for the value x^{*} of the decision variables. The left- and right-hand sides of each LMI then become constant matrices that can be displayed with showlmi.

Modification of a System of LMIs

An existing system of LMIs can be modified in two ways:

- An LMI can be removed from the system with dellmi.
- A matrix variable X can be deleted using delmvar. It can also be instantiated, that is, set to some given matrix value. This operation is performed by setmvar and allows, for example, to fix some variables and solve the LMI problem with respect to the remaining ones.

Specifying a System of LMIs

The LMI Lab can handle any system of LMIs of the form

$$
N^{T} L\left(X_{1}, \ldots, X_{K}\right) N<M T R\left(X_{1}, \ldots, X_{K}\right) M
$$

where

- X_{1}, \ldots, X_{K} are matrix variables with some prescribed structure
- The left and right outer factors N and M are given matrices with identical dimensions
- The left and right inner factors $L(\cdot)$ and $R(\cdot)$ are symmetric block matrices with identical block structures, each block being an affine combination of X_{1}, \ldots, X_{K} and their transposes.

Important: Throughout this chapter, "left-hand side" refers to what is on the "smaller" side of the inequality, and "right-hand side" to what is on the "larger" side. Accordingly, X is called the right-hand side and 0 the left-hand side of the LMI $0<X$ even when this LMI is written as $X>0$.

The specification of an LMI system involves two steps:
1 Declare the dimensions and structure of each matrix variable X_{1}, \ldots, X_{K}.
2 Describe the term content of each LMI.

This process creates the so-called internal representation of the LMI system. This computer description of the problem is used by the LMI solvers and in all subsequent manipulations of the LMI system. It is stored as a single vector which we consistently denote by LMISYS in the sequel (for the sake of clarity).

There are two ways of generating the internal description of a given LMI system: (1) by a sequence of lmivar/lmiterm commands that build it incrementally, or (2) via the LMI Editor lmiedit where LMIs can be specified directly as symbolic matrix expressions. Though somewhat less flexible and powerful than the command-based description, the LMI Editor is more straightforward to use, hence particularly well-suited for beginners. Thanks to its coding and decoding capabilities, it also constitutes a good tutorial introduction to lmivar and Imiterm. Accordingly, beginners may elect to skip
the subsections on lmivar and lmiterm and to concentrate on the GUI-based specification of LMIs with lmiedit.

A Simple Example

The following tutorial example is used to illustrate the specification of LMI systems with the LMI Lab tools. Run the demo lmidem to see a complete treatment of this example.

Example 8.1. Consider a stable transfer function

$$
\begin{equation*}
G(s)=C(s I-A)^{-1} B \tag{8-4}
\end{equation*}
$$

with four inputs, four outputs, and six states, and consider the set of input/output scaling matrices D with block-diagonal structure

$$
D=\left(\begin{array}{cccc}
d_{1} & 0 & 0 & 0 \tag{8-5}\\
0 & d_{1} & 0 & 0 \\
0 & 0 & d_{2} & d_{3} \\
0 & 0 & d_{4} & d_{5}
\end{array}\right)
$$

The following problem arises in the robust stability analysis of systems with time-varying uncertainty [4]:

Find, if any, a scaling D of structure (8-5) such that the largest gain across frequency of $D G(s) D^{-1}$ is less than one.

This problem has a simple LMI formulation: there exists an adequate scaling D if the following feasibility problem has solutions:

Find two symmetric matrices $X \in \mathbf{R}^{6 \times 6}$ and $S=\mathrm{D}^{\mathrm{T}} D \in \mathbf{R}^{4 \times 4}$ such that

$$
\left(\begin{array}{cc}
A^{T} X+X A+C^{T} S C & X B \tag{8-6}\\
B^{T} X & -S
\end{array}\right)<0
$$

$$
\begin{align*}
X & >0 \tag{8-7}\\
S & >1 \tag{8-8}
\end{align*}
$$

The LMI system (8-6)-(8-8) can be described with the LMI Editor as outlined below. Alternatively, its internal description can be generated with lmivar and lmiterm commands as follows:

```
setlmis([])
X=lmivar(1,[[6 1])
S=lmivar(1,[2 0;2 1])
% 1st LMI
lmiterm([[1 1 1 1 X],1,A,'s')
lmiterm([[1 1 1 1 S],C',C)
lmiterm([[1 1 1 2 X],1,B)
lmiterm([1 2 2 S], 1,1)
% 2nd LMI
lmiterm([ 2 1 1 1 X],1,1)
% 3rd LMI
lmiterm([ [ 3 1 1 S S],1,1)
lmiterm([3 1 1 1 0],1)
LMISYS = getlmis
```

Here the lmivar commands define the two matrix variables X and S while the lmiterm commands describe the various terms in each LMI. Upon completion,
getlmis returns the internal representation LMISYS of this LMI system. The next three subsections give more details on the syntax and usage of these various commands. More information on how the internal representation is updated by lmivar/lmiterm can also be found in "How It All Works" on page 8-18.

setlmis and getlmis

The description of an LMI system should begin with setlmis and end with getlmis. The function setlmis initializes the LMI system description. When specifying a new system, type

```
setlmis([])
```

To add on to an existing LMI system with internal representation LMISO, type setlmis(LMISO)

When the LMI system is completely specified, type

```
LMISYS = getlmis
```

This returns the internal representation LMISYS of this LMI system. This MATLAB description of the problem can be forwarded to other LMI-Lab functions for subsequent processing. The command getlmis must be used only once and after declaring all matrix variables and LMI terms.

Imivar

The matrix variables are declared one at a time with lmivar and are characterized by their structure. To facilitate the specification of this structure, the LMI Lab offers two predefined structure types along with the means to describe more general structures:

Type 1: Symmetric block diagonal structure. This corresponds to matrix variables of the form

$$
X=\left(\begin{array}{cccc}
D_{1} & 0 & \ldots & 0 \\
0 & D_{2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \ldots & 0 & D_{r}
\end{array}\right)
$$

where each diagonal block D_{j} is square and is either zero, a full symmetric matrix, or a scalar matrix

$$
D_{j}=d \times I, \quad d \in \mathbf{R}
$$

This type encompasses ordinary symmetric matrices (single block) and scalar variables (one block of size one).

Type 2: Rectangular structure. This corresponds to arbitrary rectangular matrices without any particular structure.
Type 3: General structures. This third type is used to describe more sophisticated structures and/or correlations between the matrix variables. The principle is as follows: each entry of X is specified independently as either $0, x_{n}$, or $-x_{n}$ where x_{n} denotes the n-th decision variable in the problem. For details on how to use Type 3, see "Structured Matrix Variables" on page 8-33 below as well as the lmivar entry of the "Command Reference" chapter.

In "Example 8.1" on page 8-9, the matrix variables X and S are of Type 1. Indeed, both are symmetric and S inherits the block-diagonal structure (8-5) of D. Specifically, S is of the form

$$
S=\left(\begin{array}{cccc}
s_{1} & 0 & 0 & 0 \\
0 & s_{1} & 0 & 0 \\
0 & 0 & s_{2} & s_{3} \\
0 & 0 & s_{3} & s_{4}
\end{array}\right)
$$

After initializing the description with the command setlmis ([]), these two matrix variables are declared by

```
lmivar(1,[6 1]) % X
lmivar(1,[2 0;2 1]) % S
```

In both commands, the first input specifies the structure type and the second input contains additional information about the structure of the variable:

- For a matrix variable X of Type 1 , this second input is a matrix with two columns and as many rows as diagonal blocks in X. The first column lists the
sizes of the diagonal blocks and the second column specifies their nature with the following convention:

$1 \rightarrow$ full symmetric block

$0 \rightarrow$ scalar block
$-1 \rightarrow$ zero block
In the second command, for instance, [20;2 1] means that S has two diagonal blocks, the first one being a 2 -by- 2 scalar block and the second one a $2-\beta \psi-2$ full block.

- For matrix variables of Type 2, the second input of lmivar is a two-entry vector listing the row and column dimensions of the variable. For instance, a 3 -by- 5 rectangular matrix variable would be defined by

```
lmivar(2,[3 5])
```

For convenience, lmivar also returns a "tag" that identifies the matrix variable for subsequent reference. For instance, X and S in "Example 8.1" could be defined by

```
X = lmivar(1,[6 1])
S = lmivar(1,[2 0;2 1])
```

The identifiers X and S are integers corresponding to the ranking of X and S in the list of matrix variables (in the order of declaration). Here their values would be $\mathrm{X}=1$ and $\mathrm{S}=2$. Note that these identifiers still point to X and S after deletion or instantiation of some of the matrix variables. Finally, lmivar can also return the total number of decision variables allocated so far as well as the entry-wise dependence of the matrix variable on these decision variables (see the lmivar entry of the "Command Reference" chapter for more details).

Imiterm

After declaring the matrix variables with lmivar, we are left with specifying the term content of each LMI. Recall that LMI terms fall into three categories:

- The constant terms, i.e., fixed matrices like I in the left-hand side of the LMI $S>I$
- The variable terms, i.e., terms involving a matrix variable. For instance, $A^{T} X$ and $C^{T} S C$ in (8-6). Variable terms are of the form $P X Q$ where X is a variable and P, Q are given matrices called the left and right coefficients, respectively.
- The outer factors

The following rule should be kept in mind when describing the term content of an LMI:

Important: Specify only the terms in the blocks on or above the diagonal. The inner factors being symmetric, this is sufficient to specify the entire LMI. Specifying all blocks results in the duplication of off-diagonal terms, hence in the creation of a different LMI. Alternatively, you can describe the blocks on or below the diagonal.

LMI terms are specified one at a time with lmiterm. For instance, the LMI

$$
\left(\begin{array}{cc}
A^{T} X+X A+C^{T} S C & X B \\
B^{T} X & -S
\end{array}\right)<0
$$

is described by

```
lmiterm([1 1 1 1 1],1,A,'s')
lmiterm([\begin{array}{llll}{1}&{1}&{1}&{2],\mp@subsup{C}{}{\prime},C)}\end{array})
lmiterm([\begin{array}{llll}{1}&{1}&{2}&{1}\end{array}],1,B)
lmiterm([1 2 2 2], 1,1)
```

These commands successively declare the terms $A^{T} X+X A, C^{T} S C, X B$, and $-S$. In each command, the first argument is a four-entry vector listing the term characteristics as follows:

- The first entry indicates to which LMI the term belongs. The value m means "left-hand side of the m-th LMI," and means "right-hand side of the m-th LMI"
- The second and third entries identify the block to which the term belongs. For instance, the vector [llll $\left.\begin{array}{lll}1 & 1 & 2\end{array}\right]$ indicates that the term is attached to the $(1,2)$ block
- The last entry indicates which matrix variable is involved in the term. This entry is 0 for constant terms, k for terms involving the k-th matrix variable
X_{k}, and k for terms involving X_{k}^{T} (here X and S are first and second variables in the order of declaration).

Finally, the second and third arguments of lmiterm contain the numerical data (values of the constant term, outer factor, or matrix coefficients P and Q for variable terms $P \mathrm{XQ}$ or $P X^{T} Q$). These arguments must refer to existing MATLAB variables and be real-valued. See"Complex-Valued LMIs" on page 8-35 for the specification of LMIs with complex-valued coefficients.

Some shorthand is provided to simplify term specification. First, blocks are zero by default. Second, in diagonal blocks the extra argument 's ' allows you to specify the conjugated expression $A X B+B^{T} X^{T} A^{T}$ with a single lmiterm command. For instance, the first command specifies $A^{T} X+X A$ as the "symmetrization" of XA. Finally, scalar values are allowed as shorthand for scalar matrices, i.e., matrices of the form αI with α scalar. Thus, a constant term of the form αI can be specified as the "scalar" α. This also applies to the coefficients P and Q of variable terms. The dimensions of scalar matrices are inferred from the context and set to 1 by default. For instance, the third LMI S $>I$ in "Example 8.3" on page 8-33 is described by
lmiterm([-3 1112$], 1,1) \quad \% 1 * S * 1=S$
$\operatorname{lmiterm}([3110], 1) \quad \% 1^{*} \mathrm{I}=\mathrm{I}$

Recall that by convention S is considered as the right-hand side of the inequality, which justifies the -3 in the first command.
Finally, to improve readability it is often convenient to attach an identifier (tag) to each LMI and matrix variable. The variable identifiers are returned by lmivar and the LMI identifiers are set by the function newlmi. These identifiers can be used in lmiterm commands to refer to a given LMI or matrix variable. For the LMI system of "Example 8.1", this would look like:

```
setlmis([])
X = lmivar(1,[6 1])
S = lmivar(1,[2 0;2 1])
BRL = newlmi
lmiterm([BRL 1 1 X],1,A,'s')
lmiterm([BRL 1 1 S],C',C)
lmiterm([BRL 1 2 X],1,B)
lmiterm([BRL 2 2 S], 1,1)
```

```
Xpos = newlmi
lmiterm([-Xpos 1 1 X],1,1)
Slmi = newlmi
lmiterm([-Slmi 1 1 S],1,1)
lmiterm([Slmi 1 1 0],1)
LMISYS = getlmis
```

Here the identifiers X and S point to the variables X and S while the tags BRL, Xpos, and Slmi point to the first, second, and third LMI, respectively. Note that Xpos refers to the right-hand side of the second LMI. Similarly, X would indicate transposition of the variable X.

The LMI Editor Imiedit

The LMI Editor lmiedit is a graphical user interface (GUI) to specify LMI systems in a straightforward symbolic manner. Typing

```
lmiedit
```

calls up a window with several editable text areas and various pushbuttons. To specify your LMI system,

1 Declare each matrix variable (name and structure) in the upper half of the worksheet. The structure is characterized by its type (S for symmetric block diagonal, R for unstructured, and G for other structures) and by an additional "structure" matrix. This matrix contains specific information about the structure and corresponds to the second argument of Imivar (see "lmivar" on page 8-11 for details).

Please use one line per matrix variable in the text editing areas.

2 Specify the LMIs as MATLAB expressions in the lower half of the worksheet. For instance, the LMI

$$
\left(\begin{array}{cc}
A^{T} X+X A & X B \\
B^{T} X & -I
\end{array}\right)<0
$$

is entered by typing

$$
\text { [a'*x+x*a x*b; b'*x 1] }<0
$$

if x is the name given to the matrix variable X in the upper half of the worksheet. The left- and right-hand sides of the LMIs should be valid MATLAB expressions.

Once the LMI system is fully specified, the following tasks can be performed by pressing the corresponding button:

- Visualize the sequence of lmivar/lmiterm commands needed to describe this LMI system (view commands buttons). Conversely, the LMI system defined by a particular sequence of lmivar/lmiterm commands can be displayed as a MATLAB expression by clicking on the describe... buttons.
Beginners can use this facility as a tutorial introduction to the 1mivar and lmiterm commands.
- Save the symbolic description of the LMI system as a MATLAB string (save button). This description can be reloaded later on by pressing the load button.
- Read a sequence of 1 mivar/lmiterm commands from a file (read button). You can then click on "describe the matrix variables" or "describe the LMIs . . ." to visualize the symbolic expression of the LMI system specified by these commands. The file should describe a single LMI system but may otherwise contain any sequence of MATLAB commands.
This feature is useful for code validation and debugging.
Write in a file the sequence of lmivar/lmiterm commands needed to describe a particular LMI system (write button).
This is helpful to develop code and prototype MATLAB functions based on the LMI Lab.
- Generate the internal representation of the LMI system by pressing create. The result is written in a MATLAB variable named after the LMI system (if the "name of the LMI system" is set to mylmi, the internal representation is written in the MATLAB variable mylmi). Note that all LMI-related data should be defined in the MATLAB workspace at this stage.
The internal representation can be passed directly to the LMI solvers or any other LMI Lab function.
As with 1miterm, you can use various shortcuts when entering LMI expressions at the keyboard. For instance, zero blocks can be entered simply as 0 and need not be dimensioned. Similarly, the identity matrix can be entered as 1 without dimensioning. Finally, upper diagonal LMI blocks need not be fully specified. Rather, you can just type (*) in place of each such block.

Though fairly general, lmiedit is not as flexible as lmiterm and the following limitations should be kept in mind:

- Parentheses cannot be used around matrix variables. For instance, the expression

$$
(a * x+b)^{\prime *} c+c^{\prime *}\left(a^{*} x+b\right)
$$

is invalid when x is a variable name. By contrast,

$$
(\mathrm{a}+\mathrm{b})^{\prime *} x+x^{\prime *}(\mathrm{a}+\mathrm{b})
$$

is perfectly valid.

- Loops and if statements are ignored.
- When turning lmiterm commands into a symbolic description of the LMI system, an error is issued if the first argument of lmiterm cannot be evaluated. Use the LMI and variable identifiers supplied by newlmi and lmivar to avoid such difficulties.

Figure $8-1$ shows how to specify the feasibility problem of "Example 8.1 " on page 8-9 with lmiedit.

How It All Works

Users familiar with MATLAB may wonder how lmivar and lmiterm physically update the internal representation LMISYS since LMISYS is not an argument to these functions. In fact, all updating is performed through global variables for maximum speed. These global variables are initialized by setlmis, cleared by
getlmis, and not visible in the workspace. Even though this artifact is transparent from the user's viewpoint, be sure to

- Invoke getlmis only once and after completely specifying the LMI system
- Refrain from using the command clear global before the LMI system description is ended with getlmis

Figure 8-1: Graphical user interface Imiedit

Retrieving Information

Recall that the full description of an LMI system is stored as a single vector called the internal representation. The user should not attempt to read or retrieve information directly from this vector. Three functions called lmiinfo, lminbr, and matnbr are provided to extract and display all relevant information in a user-readable format.

Imiinfo

lmiinfo is an interactive facility to retrieve qualitative information about LMI systems. This includes the number of LMIs, the number of matrix variables and their structure, the term content of each LMI block, etc. To invoke lmiinfo, enter
lmiinfo(LMISYS)
where LMISYS is the internal representation of the LMI system produced by getlmis.

Iminbr and matnbr

These two functions return the number of LMIs and the number of matrix variables in the system. To get the number of matrix variables, for instance, enter
matnbr(LMISYS)

LMI Solvers

LMI solvers are provided for the following three generic optimization problems (here x denotes the vector of decision variables, i.e., of the free entries of the matrix variables X_{1}, \ldots, X_{K}):

- Feasibility problem

Find $x \in \mathbf{R}^{N}$ (or equivalently matrices X_{1}, \ldots, X_{K} with prescribed structure) that satisfies the LMI system

$$
A(x)<B(x)
$$

The corresponding solver is called feasp.

- Minimization of a linear objective under LMI constraints

Minimize $c^{T} x$ over $x \in \mathbf{R}^{N}$ subject to $A(x)<B(x)$
The corresponding solver is called mincx.

- Generalized eigenvalue minimization problem

Minimize λ over $x \in \mathbf{R}^{N}$ subject to

$$
\begin{aligned}
C(x) & <D(x) \\
0 & <B(x) \\
A(x) & <\lambda B(x) .
\end{aligned}
$$

The corresponding solver is called gevp.
Note that $A(x)<B(x)$ above is a shorthand notation for general structured LMI systems with decision variables $x=\left(x_{1}, \ldots, x_{N}\right)$.
The three LMI solvers feasp, mincx, and gevp take as input the internal representation LMISYS of an LMI system and return a feasible or optimizing value x^{*} of the decision variables. The corresponding values of the matrix variables X_{1}, \ldots, X_{K} are derived from x^{*} with the function dec2mat. These solvers are C-MEX implementations of the polynomial-time Projective Algorithm Projective Algorithm of Nesterov and Nemirovski [3, 2].
For generalized eigenvalue minimization problems, it is necessary to distinguish between the standard LMI constraints $C(x)<D(x)$ and the linear-fractional LMIs

$$
A(x)<\lambda B(x)
$$

attached to the minimization of the generalized eigenvalue λ. When using gevp, you should follow these three rules to ensure proper specification of the problem:

- Specify the LMIs involving λ as $A(x)<B(x)$ (without the λ)
- Specify them last in the LMI system. gevp systematically assumes that the last L LMIs are linear-fractional if L is the number of LMIs involving λ
- Add the constraint $0<B(x)$ or any other constraint that enforces it. This positivity constraint is required for well-posedness of the problem and is not automatically added by gevp (see the "Command Reference" chapter for details).

An initial guess xinit for x can be supplied to mincx or gevp. Use mat2dec to derive xinit from given values of the matrix variables X_{1}, \ldots, X_{K}. Finally, various options are available to control the optimization process and the solver behavior. These options are described in detail in the "Command Reference" chapter.
The following example illustrates the use of the mincx solver.
Example 8.2. Consider the optimization problem
Minimize Trace (X) subject to

$$
\begin{equation*}
A^{T} X+X A+X B B^{T} X+Q< \tag{8-9}
\end{equation*}
$$

with data

$$
A=\left(\begin{array}{ccc}
-1 & -2 & 1 \\
3 & 2 & 1 \\
1 & -2 & -1
\end{array}\right) ; \quad B=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) ; \quad Q=\left(\begin{array}{ccc}
1 & -1 & 0 \\
-1 & -3 & -12 \\
0 & -12 & -36
\end{array}\right)
$$

It can be shown that the minimizer X^{*} is simply the stabilizing solution of the algebraic Riccati equation

$$
A^{T} X+X A+X B B^{T} X+Q=0
$$

This solution can be computed directly with the Riccati solver care and compared to the minimizer returned by mincx.

From an LMI optimization standpoint, problem (8-9) is equivalent to the following linear objective minimization problem:

$$
\text { Minimize Trace(X) subject to }\left(\begin{array}{cc}
A^{T} X+X A+Q X B \\
B^{T} X & -I
\end{array}\right)<0
$$

Since $\operatorname{Trace}(X)$ is a linear function of the entries of X, this problem falls within the scope of the mincx solver and can be numerically solved as follows:

1 Define the LMI constraint (8-9) by the sequence of commands

```
setlmis([])
X = lmivar(1,[3 1]) % variable X, full symmetric
lmiterm([1 1 1 1 X],1,a,'s')
lmiterm([[1 1 1 0 0],q)
lmiterm([1 2 2 0], 1)
lmiterm([1 2 1 X],b',1)
LMIs = getlmis
```

2 Write the objective Trace (X) as $c^{T} x$ where x is the vector of free entries of X. Since c should select the diagonal entries of X, it is obtained as the decision vector corresponding to $X=I$, that is,
c = mat2dec(LMIs,eye(3))
Note that the function defcx provides a more systematic way of specifying such objectives (see "Specifying c ${ }^{T}{ }^{x}$ Objectives for mincx" on page 8-38 for details).

3 Call mincx to compute the minimizer xopt and the global minimum copt = c'*xopt of the objective:

```
options = [1e 5,0,0,0,0]
```

```
[copt,xopt] = mincx(LMIs,c,options)
```

Here 1e 5 specifies the desired relative accuracy on copt.
The following trace of the iterative optimization performed by mincx appears on the screen:

Solver for linear objective minimization under LMI constraints
Iterations : Best objective value so far

1

2 8.511476

3
13.063640
new lower bound:
34.023978
15.768450
new lower bound: 25.005604
5
17.123012
new lower bound:
21.306781

6
17.882558
new lower bound: 19.819471
18-339853
new lower bound: 19.189417
18.552558
new lower bound: 18.919668
18.646811
new lower bound: 18.803708
10
18.687324
new lower bound: 18.753903
11
18.705715
new lower bound:
18.732574

12
18.712175

***		new lower bound:	18.723491
	13	18.714880	
***		new lower bound:	18.719624
	14	18.716094	
***		new lower bound:	18.717986
	15	18.716509	
***		new lower bound:	18.717297
	16	18.716695	
***		new lower bound:	18.716873

```
Result: feasible solution of required accuracy
    best objective value: 18.716695
    guaranteed relative accuracy: 9.50e 06
    f}\mathrm{ -radius saturation: 0.000% of R = 1.00e+09
```

The iteration number and the best value of $c^{T} x$ at the current iteration appear in the left and right columns, respectively. Note that no value is displayed at the first iteration, which means that a feasible x satisfying the constraint ($8-10$) was found only at the second iteration. Lower bounds on the global minimum of $c^{T} x$ are sometimes detected as the optimization progresses. These lower bounds are reported by the message
*** new lower bound: xxx
Upon termination, mincx reports that the global minimum for the objective $\operatorname{Trace}(X)$ is -18.716695 with relative accuracy of at least $9.5-$ by- 10^{-6}. This is the value copt returned by mincx.

4 mincx also returns the optimizing vector of decision variables xopt. The corresponding optimal value of the matrix variable X is given by

Xopt $=\operatorname{dec} 2 m a t($ LMIs, xopt, X$)$
which returns
$X_{\mathrm{opt}}=\left(\begin{array}{ccc}-6.3542 & -5.8895 & 2.2046 \\ -5.8895 & -6.2855 & 2.2201 \\ 2.2046 & 2.2201 & -6.0771\end{array}\right)$

This result can be compared with the stabilizing Riccati solution computed by care:

```
Xst = care(a,b,q, 1)
norm(Xopt-Xst)
ans =
    6.5390e 05
```


From Decision to Matrix Variables and Vice Versa

While LMIs are specified in terms of their matrix variables X_{1}, \ldots, X_{K}, the LMI solvers optimize the vector x of free scalar entries of these matrices, called the decision variables. The two functions mat2dec and dec2mat perform the conversion between these two descriptions of the problem variables.

Consider an LMI system with three matrix variables X_{1}, X_{2}, X_{3}. Given particular values $\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3$ of these variables, the corresponding value xdec of the vector of decision variables is returned by mat2dec:

```
xdec = mat2dec(LMISYS, X1, X2, X3)
```

An error is issued if the number of arguments following LMISYS differs from the number of matrix variables in the problem (see matnbr).

Conversely, given a value xdec of the vector of decision variables, the corresponding value of the k-th matrix is given by dec2mat. For instance, the value X2 of the second matrix variable is extracted from xdec by
X2 = dec2mat(LMISYS,xdec, 2)

The last argument indicates that the second matrix variable is requested. It could be set to the matrix variable identifier returned by lmivar.
The total numbers of matrix variables and decision variables are returned by matnbr and decnbr, respectively. In addition, the function decinfo provides precise information about the mapping between decision variables and matrix variable entries (see the "Command Reference" chapter).

Validating Results

The LMI Lab offers two functions to analyze and validate the results of an LMI optimization. The function evallmi evaluates all variable terms in an LMI system for a given value of the vector of decision variables, for instance, the feasible or optimal vector returned by the LMI solvers. Once this evaluation is performed, the left- and right-hand sides of a particular LMI are returned by showlmi.

In the LMI problem considered in "Example 8.2 " on page 8 -23, you can verify that the minimizer xopt returned by mincx satisfies the LMI constraint (8-10) as follows:

```
evlmi = evallmi(LMIs,xopt)
[lhs,rhs] = showlmi(evlmi,1)
```

The first command evaluates the system for the value xopt of the decision variables, and the second command returns the left- and right-hand sides of the first (and only) LMI. The negative definiteness of this LMI is checked by

```
eig(lhs-rhs)
ans =
    2.0387e 04
    3.9333e 05
    1.8917e 07
    4.6680e+01
```


Modifying a System of LMIs

Once specified, a system of LMIs can be modified in several ways with the functions dellmi, delmvar, and setmvar.

dellmi

The first possibility is to remove an entire LMI from the system with dellmi. For instance, suppose that the LMI system of "Example 8.1" on page 8-9 is described in LMISYS and that we want to remove the positivity constraint on X. This is done by

```
NEWSYS = dellmi(LMISYS,2)
```

where the second argument specifies deletion of the second LMI. The resulting system of two LMIs is returned in NEWSYS.

The LMI identifiers (initial ranking of the LMI in the LMI system) are not altered by deletions. As a result, the last LMI

$$
S>I
$$

remains known as the third LMI even though it now ranks second in the modified system. To avoid confusion, it is safer to refer to LMIs via the identifiers returned by newlmi. If BRL, Xpos, and Slmi are the identifiers attached to the three LMIs (8-6)-(8-8), Slmi keeps pointing to $S>I$ even after deleting the second LMI by

```
NEWSYS = dellmi(LMISYS,Xpos)
```


dellmi

Another way of modifying an LMI system is to delete a matrix variable, that is, to remove all variable terms involving this matrix variable. This operation is performed by delmvar. For instance, consider the LMI

$$
A^{T} X+X A+B W+W^{T} B^{T}+I<0
$$

with variables $X=X^{T} \in \mathbf{R}^{4 \times 4}$ and $\mathrm{W} \in \mathbf{R}^{2 \times 4}$. This LMI is defined by

```
setlmis([])
X = lmivar(1,[4 1]) % X
W = lmivar(2,[2 4]) % W
```

```
lmiterm([[1 1 1 1 X],1,A,'s')
lmiterm([[1 1 1 1 W],B,1,'s')
lmiterm([[1 1 1 1 0],1)
LMISYS = getlmis
```

To delete the variable W, type the command

```
NEWSYS = delmvar(LMISYS,W)
```

The resulting NEWSYS now describes the Lyapunov inequality

$$
A^{T} X+X A+I<0
$$

Note that delmvar automatically removes all LMIs that depended only on the deleted matrix variable.

The matrix variable identifiers are not affected by deletions and continue to point to the same matrix variable. For subsequent manipulations, it is therefore advisable to refer to the remaining variables through their identifier. Finally, note that deleting a matrix variable is equivalent to setting it to the zero matrix of the same dimensions with setmvar.

setmvar

The function setmvar is used to set a matrix variable to some given value. As a result, this variable is removed from the problem and all terms involving it become constant terms. This is useful, for instance, to fixsetmvar some variables and optimize with respect to the remaining ones.

Consider again "Example 8.1" on page 8-9 and suppose we want to know if the peak gain of G itself is less than one, that is, if

$$
\|G\|_{\infty}<1
$$

This amounts to setting the scaling matrix D (or equivalently, $S=D^{T} D$) to a multiple of the identity matrix. Keeping in mind the constraint $S>I$, a legitimate choice is $S=2-\beta \psi-I$. To set S to this value, enter

```
NEWSYS = setmvar(LMISYS,S,2)
```

The second argument is the variable identifier S, and the third argument is the value to which S should be set. Here the value 2 is shorthand for $2-\beta \psi-I$. The resulting system NEWSYS reads

$$
\left(\begin{array}{cc}
A^{T} X+X A+2 C^{T} C & X B \\
B^{T} X & -2 I
\end{array}\right)<0
$$

Note that the last LMI is now free of variable and trivially satisfied. It could, therefore, be deleted by

```
    NEWSYS = dellmi(NEWSYS,3)
or
    NEWSYS = dellmi(NEWSYS,Slmi)
```

if Slmi is the identifier returned by newlmi.

Advanced Topics

This last section gives a few hints for making the most out of the LMI Lab. It is directed toward users who are comfortable with the basics described above.

Structured Matrix Variables

Fairly complex matrix variable structures and interdependencies can be specified with lmivar. Recall that the symmetric block-diagonal or rectangular structures are covered by Types 1 and 2 of 1mivar provided that the matrix variables are independent. To describe more complex structures or correlations between variables, you must use Type 3 and specify each entry of the matrix variables directly in terms of the free scalar variables of the problem (the so-called decision variables).

With Type 3 , each entry is specified as either 0 or $\pm x_{n}$ where x_{n} is the n-th decision variable. The following examples illustrate how to specify nontrivial matrix variable structures with lmivar. We first consider the case of uncorrelated matrix variables.

Example 8.3. Suppose that the problem variables include a 3-by-3 symmetric matrix X and a 3 -by- 3 symmetric Toeplitz matrix

$$
Y=\left(\begin{array}{lll}
y_{1} & y_{2} & y_{3} \\
y_{2} & y_{1} & y_{2} \\
y_{3} & y_{2} & y_{1}
\end{array}\right)
$$

The variable Y has three independent entries, hence involves three decision variables. Since Y is independent of X, these decision variables should be labeled $n+1, n+2, n+3$ where n is the number of decision variables involved in X. To retrieve this number, define the variable X (Type 1) by

```
setlmis([])
[X,n] =
lmivar(1,[3 1])
```

The second output argument n gives the total number of decision variables used so far (here $n=6$). Given this number, Y can be defined by

```
Y = lmivar(3,n+[1 2 3;2 1 2;3 2 1])
```

or equivalently by

```
Y = lmivar(3,toeplitz(n+[1 2 3]))
```

where toeplitz is a standard MATLAB function. For verification purposes, we can visualize the decision variable distributions in X and Y with decinfo:

```
lmis = getlmis
decinfo(lmis,X)
ans =
    1 2 4
    2 3 5
    4 6
decinfo(lmis,Y)
ans =
    7 8 9
    8 7 8
    9 8 7
```

The next example is a problem with interdependent matrix variables.
Example 8.4. Consider three matrix variables X, Y, Z with structure

$$
X=\left(\begin{array}{ll}
x & 0 \\
0 & y
\end{array}\right), \quad Y=\left(\begin{array}{ll}
z & 0 \\
0 & t
\end{array}\right), \quad Z=\left(\begin{array}{cc}
0 & -x \\
-t & 0
\end{array}\right)
$$

where x, y, z, t are independent scalar variables. To specify such a triple, first define the two independent variables X and Y (both of Type 1) as follows:

```
setlmis([])
[X,n,sX] = lmivar(1,[1 0;1 0])
[Y,n,sY] = lmivar(1,[1 0;1 0])
```

The third output of lmivar gives the entry-wise dependence of X and Y on the decision variables $\left(x_{1}, x_{2}, x_{3}, x_{4}\right):=(x, y, z, t)$:
sX =
10
02

```
sY =
    3 0
    0 4
```

Using Type 3 of lmivar, you can now specify the structure of Z in terms of the decision variables $x_{1}=x$ and $x_{4}=t$:

$$
[Z, n, s Z]=\operatorname{lmivar}(3,[0 \quad s X(1,1) ;-s Y(2,2) \quad 0])
$$

Since $\operatorname{sX}(1,1)$ refers to x_{1} while $\operatorname{sY}(2,2)$ refers to x_{4}, this defines the variable

$$
Z=\left(\begin{array}{cc}
0 & -x_{1} \\
-x_{4} & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & -x \\
-t & 0
\end{array}\right)
$$

as confirmed by checking its entry-wise dependence on the decision variables:

```
sZ =
    0
```


Complex-Valued LMIs

The LMI solvers are written for real-valued matrices and cannot directly handle LMI problems involving complex-valued matrices. However, complex-valued LMIs can be turned into real-valued LMIs by observing that a complex Hermitian matrix $L(x)$ satisfies

$$
L(x)<0
$$

if and only if

$$
\left(\begin{array}{cc}
\operatorname{Re}(L(x)) & \operatorname{Im}(L(x)) \\
-\operatorname{Im}(L(x)) & \operatorname{Re}(L(x))
\end{array}\right)<0
$$

This suggests the following systematic procedure for turning complex LMIs into real ones:

- Decompose every complex matrix variable X as

$$
X=X_{1}+j X_{2}
$$

where X_{1} and X_{2} are real

- Decompose every complex matrix coefficient A as

$$
A=A_{1}+j A_{2}
$$

where A_{1} and A_{2} are real

- Carry out all complex matrix products. This yields affine expressions in X_{1}, X_{2} for the real and imaginary parts of each LMI, and an equivalent real-valued LMI is readily derived from the above observation.

For LMIs without outer factor, a streamlined version of this procedure consists of replacing any occurrence of the matrix variable $X=X_{1}+j X_{2}$ by

$$
\left(\begin{array}{cc}
X_{1} & X_{2} \\
-X_{2} & X_{1}
\end{array}\right)
$$

and any fixed matrix $A=A_{1}+j A_{2}$, including real ones,by

$$
\left(\begin{array}{cc}
A_{1} & A_{2} \\
-A_{2} & A_{1}
\end{array}\right)
$$

For instance, the real counterpart of the LMI system

$$
M^{H} X M<X, \quad X=X^{H}>I
$$

reads (given the decompositions $M=M_{1}+j M_{2}$ and $X=X_{1}+j X_{2}$ with M_{j}, X_{j} real):

$$
\begin{gathered}
\left(\begin{array}{cc}
M_{1} & M_{2} \\
-M_{2} & M_{1}
\end{array}\right)^{T}\left(\begin{array}{cc}
X_{1} & X_{2} \\
-X_{2} & X_{1}
\end{array}\right)\left(\begin{array}{cc}
M_{1} & M_{2} \\
-M_{2} & M_{1}
\end{array}\right)<\left(\begin{array}{cc}
X_{1} & X_{2} \\
-X_{2} & X_{1}
\end{array}\right) \\
\left(\begin{array}{cc}
X_{1} & X_{2} \\
-X_{2} & X_{1}
\end{array}\right)<I
\end{gathered}
$$

Note that $X=X^{H}$ in turn requires that $X_{1}=X^{H}$ and $X_{2}+X_{2}^{T} 2=0$. Consequently, X_{1} and X_{2} should be declared as symmetric and skewsymmetric matrix variables, respectively.

Assuming, for instance, that $M \in \mathbf{C}^{5 \times 5}$, the LMI system (8-11) would be specified as follows:

```
M1=real(M), M2=imag(M)
bigM=[M1 M2;-M2 M1]
setlmis([])
% declare bigX=[X1 X2;-X2 X1] with X1=X1' and X2+X2'=0:
[X1,n1,sX1] = lmivar(1,[5 1])
[X2,n2,sX2] = lmivar(3,skewdec(5,n1))
bigX = lmivar(3,[sX1 sX2;-sX2 sX1])
% describe the real counterpart of (1.12):
lmiterm([[1 1 1 1 0],1)
lmiterm([ [ 1 1 1 bigX],1,1)
lmiterm([2 1 1 1 bigX],bigM',bigM)
lmiterm([ 2 1 1 bigX],1,1)
lmis = getlmis
```

Note the three-step declaration of the structured matrix variable bigx =
$\left(\begin{array}{cc}X_{1} & X_{2} \\ -X_{2} & X_{1}\end{array}\right):$
1 Specify X_{1} as a (real) symmetric matrix variable and save its structure description sX1 as well as the number n1 of decision variables used in X_{1}.

2 Specify X_{2} as a skew-symmetric matrix variable using Type 3 of lmivar and the utility skewdec. The command skewdec $(5, \mathrm{n} 1)$ creates a 5 -by- 5 skew-symmetric structure depending on the decision variables $\mathrm{n} 1+1$, n1 + 2,...

3 Define the structure of bigX in terms of the structures sX1 and sX2 of X_{1} and X_{2}.

See the previous subsection for more details on such structure manipulations.

Specifying $c^{T} x$ Objectives for mincx

The LMI solver mincx minimizes linear objectives of the form $c^{T} x$ where x is the vector of decision variables. In most control problems, however, such objectives are expressed in terms of the matrix variables rather than of x. Examples include $\operatorname{Trace}(X)$ where X is a symmetric matrix variable, or $u^{T} X u$ where u is a given vector.

The function defcx facilitates the derivation of the c vector when the objective is an affine function of the matrix variables. For the sake of illustration, consider the linear objective

$$
\operatorname{Trace}(X)+x_{0}^{T} P x_{0}
$$

where X and P are two symmetric variables and x_{0} is a given vector. If lmisys is the internal representation of the LMI system and if x_{0}, X, P have been declared by

```
x0 = [1;1]
setlmis([])
X = lmivar(1,[3 0])
P = lmivar(1,[2 1])
    :
    :
lmisys = getlmis
```

the c vector such that $c^{T} x=\operatorname{Trace}(X)+x_{0}^{T} P x_{0}$ can be computed as follows:

```
n = decnbr(lmisys)
c = zeros(n,1)
for j=1:n,
    [Xj,Pj] = defcx(lmisys,j,X,P)
    c(j) = trace(Xj) + x0'*Pj*x0
end
```

The first command returns the number of decision variables in the problem and the second command dimensions c accordingly. Then the for loop performs the following operations:

1 Evaluate the matrix variables X and P when all entries of the decision vector x are set to zero except $x_{j}:=1$. This operation is performed by the function defcx. Apart from Imisys and j, the inputs of defcx are the identifiers X and

P of the variables involved in the objective, and the outputs Xj and Pj are the corresponding values.

2 Evaluate the objective expression for $\mathrm{X}:=\mathrm{Xj}$ and $\mathrm{P}:=\mathrm{Pj}$. This yields the j-th entry of c by definition.

In our example the result is
c =
3
1
2
1
Other objectives are handled similarly by editing the following generic skeleton:

```
n = decnbr( LMI system )
c = zeros(n,1)
for j=1:n,
    [ matrix values ] = defcx( LMI system,j,
matrix identifiers)
    c(j) = objective(matrix values)
end
```


Feasibility Radius

When solving LMI problems with feasp, mincx, or gevp, it is possible to constrain the solution x to lie in the ball

$$
x^{T} x<R^{2}
$$

where $R>0$ is called the feasibility radius. This specifies a maximum (Euclidean norm) magnitude for x and avoids getting solutions of very large norm. This may also speed up computations and improve numerical stability. Finally, the feasibility radius bound regularizes problems with redundant variable sets. In rough terms, the set of scalar variables is redundant when an equivalent problem could be formulated with a smaller number of variables.

The feasibility radius R is set by the third entry of the options vector of the LMI solvers. Its default value is $R=109$. Setting R to a negative value means "no rigid bound," in which case the feasibility radius is increased during the
optimization if necessary. This "flexible bound" mode may yield solutions of large norms.

Well-Posedness Issues

The LMI solvers used in the LMI Lab are based on interior-point optimization techniques. To compute feasible solutions, such techniques require that the system of LMI constraints be strictly feasible, that is, the feasible set has a nonempty interior. As a result, these solvers may encounter difficulty when the LMI constraints are feasible but not strictly feasible, that is, when the LMI

$$
L(x) \text { ð } 0
$$

has solutions while

$$
L(x)<0
$$

has no solution.
For feasibility problems, this difficulty is automatically circumvented by feasp, which reformulates the problem

Find x such that $L(x) \leq 0$
(8-12)
as

Minimize t subject to $L x<t \times I$.
In this modified problem, the LMI constraint is always strictly feasible in x, t and the original LMI (8-12) is feasible if and only if the global minimum $t_{\min }$ of (8-13) satisfies

$$
t_{\min } ð 0
$$

For feasible but not strictly feasible problems, however, the computational effort is typically higher as feasp strives to approach the global optimum $t_{\text {min }}$ $=0$ to a high accuracy.

For the LMI problems addressed by mincx and gevp, nonstrict feasibility generally causes the solvers to fail and to return an "infeasibility" diagnosis. Although there is no universal remedy for this difficulty, it is sometimes possible to eliminate underlying algebraic constraints to obtain a strictly feasible problem with fewer variables.

Another issue has to do with homogeneous feasibility problems such as

$$
A^{T} P+P A<0, \quad P>0
$$

While this problem is technically well-posed, the LMI optimization is likely to produce solutions close to zero (the trivial solution of the nonstrict problem). To compute a nontrivial Lyapunov matrix and easily differentiate between feasibility and infeasibility, replace the constraint $P>0$-by- $P>\alpha I$ with $\alpha>0$. Note that this does not alter the problem due to its homogeneous nature.

Semi-Definite $B(x)$ in gevp Problems

Consider the generalized eigenvalue minimization problem

$$
\begin{equation*}
\text { Minimize } \lambda \text { subject to } A(x)<\lambda B(x), B(x)>0, C(x)<0 \text {. } \tag{8-14}
\end{equation*}
$$

Technically, the positivity of $B(x)$ for some $x \in \mathbf{R}^{n}$ is required for the well-posedness of the problem and the applicability of polynomial-time interior-point methods. Hence problems where

$$
B(x)=\left(\begin{array}{cc}
B_{1}(x) & 0 \\
0 & 0
\end{array}\right), \text { with } B_{1}(x)>0 \text { strictly feasible }
$$

cannot be directly solved with gevp. A simple remedy consists of replacing the constraints

$$
A(x)<B(x), \quad B(x)>0
$$

by

$$
A(x)<\left(\begin{array}{ll}
Y & 0 \\
0 & 0
\end{array}\right), \quad Y<\lambda B_{1}(x), \quad B_{1}(x)>0
$$

where Y is an additional symmetric variable of proper dimensions. The resulting problem is equivalent to ($8-14$) and can be solved directly with gevp.

Efficiency and Complexity Issues

As explained in the beginning of the chapter, the term-oriented description of LMIs used in the LMI Lab typically leads to higher efficiency than the canonical representation

$$
\begin{equation*}
A_{0}+x_{1} A_{1}+\ldots+x_{N} A_{N}<0 \tag{8-15}
\end{equation*}
$$

This is no longer true, however, when the number of variable terms is nearly equal to or greater than the number N of decision variables in the problem. If your LMI problem has few free scalar variables but many terms in each LMI, it is therefore preferable to rewrite it as $(8-15)$ and to specify it in this form. Each scalar variable x_{j} is then declared independently and the LMI terms are of the form $x_{j} A_{j}$.
If M denotes the total row size of the LMI system and N the total number of scalar decision variables, the flop count per iteration for the feasp and mincx solvers is proportional to

- N^{3} when the least-squares problem is solved via. Cholesly factorization of the Hessian matrix (default) [2]
- M-by- N^{2} when numerical instabilities warrant the use of QR factorization instead

While the theory guarantees a worst-case iteration count proportional to M, the number of iterations actually performed grows slowly with M in most problems. Finally, while feasp and mincx are comparable in complexity, gevp typically demands more computational effort. Make sure that your LMI problem cannot be solved with mincx before using gevp.

Solving $M+P^{T} X Q+Q^{T} X^{T} P<\mathbf{0}$

In many output-feedback synthesis problems, the design can be performed in two steps:

1 Compute a closed-loop Lyapunov function via LMI optimization.
2 Given this Lyapunov function, derive the controller state-space matrices by solving an LMI of the form

$$
\begin{equation*}
M+P^{T} X Q+Q^{T} X^{T} P<0 \tag{8-16}
\end{equation*}
$$

where M, P, Q are given matrices and X is an unstructured m-by- n matrix variable.

It turns out that a particular solution X_{c} of (8-16) can be computed via simple linear algebra manipulations [1]. Typically, X_{c} corresponds to the center of the ellipsoid of matrices defined by (8-16).

The function basiclmi returns the "explicit" solution X_{c} :

$$
X c=\operatorname{basiclmi}(M, P, Q)
$$

Since this central solution sometimes has large norm, basiclmi also offers the option of computing an approximate least-norm solution of (8-16). This is done by

```
X = basiclmi(M,P,Q,'Xmin')
```

and involves LMI optimization to minimize $\|X\|$.

References

[1] Gahinet, P., and P. Apkarian, "A Linear Matrix Inequality Approach to H_{∞} Control," Int. J. Robust and Nonlinear Contr., 4 (1994), pp. 421-448.
[2] Nemirovski, A., and P. Gahinet, "The Projective Method for Solving Linear Matrix Inequalities," Proc. Amer. Contr. Conf., 1994, pp. 840-844.
[3] Nesterov, Yu, and A. Nemirovski, Interior Point Polynomial Methods in Convex Programming: Theory and Applications, SIAM Books, Philadelphia, 1994.
[4] Shamma, J.S., "Robustness Analysis for Time-Varying Systems," Proc. Conf. Dec. Contr., 1992, pp. 3163-3168.

Command Reference

This chapter gives a detailed description of all LMI Control Toolbox functions. Functions are grouped by application in tables at the beginning of this chapter. In addition, information on each function is aavailable through the online Help facility.

List of Functions

Linear Algebra	
basiclmi	Solve $M+P^{T} X Q+Q^{T} X^{T} P<0$
care	Continuous-time Riccati solver
dare	Discrete-time Riccati solver
dricpen	Generalized Riccati solver (discrete-time)
ricpen	Generalized Riccati solver (continuous-time)
Linear Time-Invariant Systems	
ltisys	Specify a SYSTEM matrix
ltiss	Extract state-space data
ltitf	Compute the transfer function (SISO)
sbalanc	Balance a state-space realization via diagonal similarity
sinfo	Return information about a SYSTEM matrix
sinv	Invert an LTI system
splot	Plot the time and frequency responses of LTI systems
spol	Return the poles of an LTI system
sresp	Frequency response of an LTI system
ssub	Extract a subsystem from a system
Interconnection of Systems	
sadd	Form the parallel interconnection of systems
sconnect	Describe general control loops

Interconnection of Systems	
sdiag	Append (concatenate) several systems
slft	Form linear-fractional interconnections
sloop	Form elementary feedback interconnections
smult	Form the series interconnection of systems
Polytopic and Parameter-Dependent Systems (P-Systems)	
aff2pol	Polytopic representation of an affine parameter-dependent system
pdsimul	Simulation of parameter-dependent systems along a parameter trajectory
psinfo	Retrieve information about a P-system psysSpecify a P-system pvecSpecify a vector of uncertain or time-varying parameters pvinfoInterpret the output of pvec Dynamical Uncertainty ublockSpecify an uncertainty block udiagSpecify block-diagonal uncertainty from individual uncertainty blocks
uinfo	Display the characteristics of uncertainty structures
aff2lft	Linear-fractional representation of an affine parameter-dependent system

Robustness Analysis	
decay	Quadratic decay rate
dnorminf	RMS gain of a discrete-time LTI system
muperf	Robust performance of an uncertain LTI system
mustab	Robust stability of an uncertain LTI system
norminf	H_{∞} norm (RMS gain) of an LTI system
norm2	H_{2} performance of an LTI system
quadperf	Quadratic performance
quadstab	Quadratic stability
pdlstab	Robust stability analysis via parameter-dependent Lyapunov functions
popov	Popov criterion

H_{∞} Control and Loop Shaping

Continuous Time	
hinflmi	LMI-based H_{∞} synthesis
hinfmix	Mixed H_{2} / H_{∞} synthesis with regional pole placement
hinfric	Riccati-based H_{∞} synthesis
hinfpar	Extract state-space data from the plant SYSTEM matrix
lmireg	Specify LMI regions for pole placement
magshape	Graphical specification of the shaping filters
msfsyn	Multi-model/objective state-feedback synthesis
sconnect	Specify general control structures

Discrete Time		
dhinflmi	LMI-based H_{∞} synthesis	
dhinfric	Riccati-based H_{∞} synthesis	
hinfpar	Retrieve the plant state-space data	
Gain Scheduling		
hinfgs	Synthesis of robust gain-scheduled controllers	
pdsimul	Simulation along parameter trajectories	

LMI Lab: Specifying and Solving LMIs

Specification of LMIs	
lmiedit	GUI for LMI specification
setlmis	Initialize the LMI description
lmivar	Define a new matrix variable
lmiterm	Specify the term content of an LMI
newlmi	Attach an identifying tag to new LMIs
getlmis	Get the internal description of the LMI system

LMI Solvers	
feasp	Feasibility of a system of LMIs
gevp	Generalized eigenvalue minimization under LMI constraints
mincx	Minimization of a linear objective under LMI constraints
dec2mat	Convert the output of the solvers into values of the matrix variables
defcx	Help define $c^{T} x$ objectives for mincx

Evaluation of LMIs/Validation of Results

evallmi	Evaluate all variable terms for given values of the decision variables
showlmi	Return the left- and right-hand sides of an evaluated LMI
setmvar	Set a matrix variable to a given value

LMI Lab: Additional Facilities

Information Retrieval	
decinfo	Visualize the mapping between matrix variable entries and decision variables
decnbr	Get the number of decision variables, that is, the number of free scalar variables in a problem
lmiinfo	Inquire about an existing system of LMIs
lminbr	Get the number of LMIs in a problem
matnbr	Get the number of matrix variables in a problem
	Express each matrix variable entry in terms of the decision variables
Manipulations of LMI Variables	
decinfo	Return the matrix variable values given a vector of decision variables
dec2mat	Return the vector of decision variables given the matrix variable values
mat2dec	Delete an LMI from the system Modification of LMI Systems dellmi Remove a matrix variable from the problem delmvar Instantiate a matrix variable setmvar

Purpose

Syntax

Description

Compute the linear-fractional representation of an affine parameterdependent system
[sys,delta] = aff2lft(affsys)

The input argument affsys describes an affine parameter-dependent system of the form

$$
\begin{aligned}
E(p) \dot{\mathrm{x}} & =A(p) x+B(p) u \\
y & =C(p) x+D(p) u
\end{aligned}
$$

where $p=\left(p_{1}, \ldots, p_{n}\right)$ is a vector of uncertain or time-varying real parameters taking values in a box:

$$
\underline{\mathrm{p}}_{\mathrm{j}} \leq \mathrm{pj} \leq \overline{\mathrm{p}}_{\mathrm{j}}
$$

Such systems are specified with psys.
Given this affine parameter-dependent model, the function aff2lft returns the equivalent linear-fractional representation

where

- $P(s)$ is an LTI system called the nominal plant
- The block-diagonal operator $\Delta=\operatorname{diag}\left(\delta_{1} I_{r_{1}}, \ldots, \delta_{n} I_{\mathrm{r}_{n}}\right)$ accounts for the uncertainty on the real parameters p_{j}. Each scalar δ_{j} is real, possibly repeated ($r_{j}>1$), and bounded by

$$
\left|\delta_{j}\right| \leq \frac{\overline{\mathrm{p}}_{\mathrm{j}}-\underline{\mathrm{p}}_{\mathrm{j}}}{2}
$$

The SYSTEM matrix of P and the description of Δ are returned in sys and delta. Closing the loop with $\Delta \equiv 0$ yields the LTI system

$$
\begin{aligned}
E\left(p_{a v}\right) \dot{\mathrm{x}} & =A\left(p_{a v}\right) x+B\left(p_{a v}\right) u \\
y & =C\left(p_{a v}\right) x+D\left(p_{a v}\right) u
\end{aligned}
$$

where $p_{a v}=\frac{1}{2}(\underline{\mathrm{p}}+\overline{\mathrm{p}})$ is the vector of average parameter values.

Example

See example in "Sector-Bounded Uncertainty" on page 2-30.
See Also
psys, pvec, ublock, udiag

Purpose

Syntax

Description

Example

See Also

Convert affine parameter-dependent models to polytopic ones
polsys $=$ aff2pol(affsys)
aff2pol derives a polytopic representation polsys of the affine parameterdependent system

$$
\begin{align*}
E(p) \dot{x} & =A(p) x+B(p) u \tag{9-1}\\
y & =C(p) x+D(p) u \tag{9-2}
\end{align*}
$$

where $p=\left(p_{1}, \ldots, p_{n}\right)$ is a vector of uncertain or time-varying real parameters taking values in a box or a polytope. The description affsys of this system should be specified with psys.

The vertex systems of polsys are the instances of (9-1)-(9-2) at the vertices $p_{e x}$ of the parameter range, i.e., the SYSTEM matrices

$$
\left(\begin{array}{cc}
\mathrm{A}\left(\mathrm{p}_{\mathrm{ex}}\right)+\mathrm{jE}\left(\mathrm{p}_{\mathrm{ex}}\right) & \mathrm{B}\left(\mathrm{p}_{\mathrm{ex}}\right) \\
\mathrm{C}\left(\mathrm{p}_{\mathrm{ex}}\right) & \mathrm{D}\left(\mathrm{p}_{\mathrm{ex}}\right)
\end{array}\right)
$$

for all corners $p_{e x}$ of the parameter box or all vertices $p_{e x}$ of the polytope of parameter values.
"Example 2.1" on page 2-21.
psys, pvec, aff2lft

basiclmi

Purpose
 Compute a solution X of $M+P^{\mathrm{T}} X Q+Q^{\mathrm{T}} X^{\mathrm{T}} P<0$

Syntax $\quad X=\operatorname{basiclmi}(M, P, Q$, option $)$

Description
basiclmi computes a solution X of the LMI

$$
M+P^{\mathrm{T}} X Q+Q^{\mathrm{T}} X^{\mathrm{T}} P<0
$$

where M is symmetric and P, Q are matrices of compatible dimensions. If W_{P} and W_{Q} are orthonormal bases of the null space of P and Q, this LMI is solvable if and only if
$\mathrm{W}_{\mathrm{P}}^{\mathrm{T}} \mathrm{M} W_{P}<0$ and $\mathrm{W}_{\mathrm{Q}}^{\mathrm{T}} \mathrm{M} W_{Q}<0$
The output is [] when these conditions are not satisfied.
The solution X is derived by standard linear algebra manipulations. When option is set to 'Xmin', basiclmi computes the least-norm solution by solving the LMI problem

Minimize τ
subject to $M+P^{\mathrm{T}} X Q+Q^{\mathrm{T}} X^{\mathrm{T}} P<0$

$$
\left(\begin{array}{cc}
\tau \mathrm{I} & \mathrm{X} \\
\mathrm{X}^{\mathrm{T}} & \tau \mathrm{I}
\end{array}\right) \geq 0
$$

See Also feasp, mincx

Purpose

Syntax	$X=\operatorname{care}(A, B, Q, R, S, E)$
	$[X, L, G, R R]=\operatorname{care}(A, B, Q, R, S, E)$

Reference

See Also ricpen, cares, dare

Purpose

Syntax

Description

Remark

Solve discrete-time Riccati equations (DARE)

$$
\begin{aligned}
& X=\operatorname{dare}(A, B, Q, R, S, E) \\
& {[X, L, G, R R]=\operatorname{dare}(A, B, Q, R, S, E)}
\end{aligned}
$$

dare computes the stabilizing solution X of the algebraic Riccati equation

$$
\begin{equation*}
A^{T} X A-E^{T} X E-\left(A^{T} X B+S\right)\left(B^{T} X B+R\right)^{-1}\left(B^{T} X A+S^{T}\right)+Q=0 \tag{9-3}
\end{equation*}
$$

where E is an invertible matrix. The solution is computed by unitary deflation of the associated symplectic pencil

$$
\mathcal{H}-\lambda \mathcal{L}=\left[\begin{array}{ccc}
\mathrm{A} & 0 & \mathrm{~B} \\
-\mathrm{Q} & -\mathrm{E}^{\mathrm{T}} & -\mathrm{S} \\
\mathrm{~S}^{\mathrm{T}} & 0 & \mathrm{R}
\end{array}\right]-\lambda\left[\begin{array}{ccc}
\mathrm{E} & 0 & 0 \\
0 & \mathrm{~A}^{\mathrm{T}} & 0 \\
0 & -\mathrm{B}^{\mathrm{T}} & 0
\end{array}\right]
$$

For solvability, the pencil $\mathcal{H}-\lambda \mathcal{L}$ must have no finite generalized eigenvalue on the unit circle.

If the input arguments S and E are omitted, the matrices S and E are set to the default values $S=0$ and $E=I$. The function dare also returns the vector L of closed-loop eigenvalues, the gain matrix G given by

$$
G=-\left(B^{T} X B+R\right)^{-1}\left(B^{T} X A+S^{T}\right)
$$

and the Frobenius norm RR of the relative residual matrix.
The function dricpen is a variant of dare where the inputs are the two matrices H and L defined above. The syntax is

```
X = dricpen(H,L)
```

or

$$
[\mathrm{X} 1, \mathrm{X} 2]=\operatorname{dricpen}(\mathrm{H}, \mathrm{~L})
$$

This second syntax returns two matrices X_{1}, X_{2} such that

- $\left[\begin{array}{l}\mathrm{X}_{1} \\ \mathrm{X}_{2}\end{array}\right]$ has orthonormal columns,
- $\mathrm{X}=\mathrm{X}_{2} \mathrm{X}_{1}^{-1}$ is the stabilizing solution of (9-3).

Reference

See Also

Pappas, T., A.J. Laub, and N.R. Sandell, "On the Numerical Solution of the Discrete-Time Algebraic Riccati Equation," IEEE Trans. Aut. Contr., AC-25 (1980), pp. 631-641.

Arnold, W.F., and A.J. Laub, "Generalized Eigenproblem Algorithms and Software for Algebraic Riccati Equations," Proc. IEEE, 72 (1984), pp. 17461754.

dricpen, dares, care

Purpose
Syntax $\quad[$ drate,$P]=\operatorname{decay}(p s, o p t i o n s)$
Quadratic decay rate of polytopic or affine P-systems

Example

See Also

For affine parameter-dependent systems

$$
E(p) \dot{\mathrm{x}}=A(p) x, \quad p(t)=\left(p_{1}(t), \ldots, p_{n}(t)\right)
$$

or polytopic systems
$E(t) \dot{\mathrm{x}}=A(t) x, \quad(A, E) \in \operatorname{Co}\left\{\left(A_{1}, E_{1}\right), \ldots,\left(A_{n}, E_{n}\right)\right\}$,
decay returns the quadratic decay rate drate, i.e., the smallest $\alpha \in \mathbf{R}$ such that

$$
A^{\mathrm{T}} Q E+E Q A^{T}<\alpha Q
$$

holds for some Lyapunov matrix $Q>0$ and all possible values of (A, E). Two control parameters can be reset via options(1) and options(2):

- If options (1) $=0$ (default), decay runs in fast mode, using the least expensive sufficient conditions. Set options (1)=1 to use the least conservative conditions.
- options(2) is a bound on the condition number of the Lyapunov matrix P. The default is 10^{9}.

See "Example 3.3" on page 3-9.
quadstab, pdlstab, mustab, psys

Purpose

Describe how the entries of a matrix variable X relate to the decision variables

Syntax
 decinfo(lmisys)
 dec $X=$ decinfo(lmisys, X)

Description

Example 1

Consider an LMI with two matrix variables X and Y with structure:

- $X=x I_{3}$ with x scalar
- Y rectangular of size 2-by-1

If these variables are defined by

```
setlmis([])
X = lmivar(1,[[3 0])
Y = lmivar(2,[2 1])
    :
        :
lmis = getlmis
```


decinfo

the decision variables in X and Y are given by

```
dX = decinfo(lmis,X)
dX =
    1 0 0
    0 1 0
    0 0 1
dY = decinfo(lmis,Y)
dY =
    2
    3
```

This indicates a total of three decision variables x_{1}, x_{2}, x_{3} that are related to the entries of X and Y by

$$
\mathrm{X}=\left(\begin{array}{ccc}
\mathrm{x}_{1} & 0 & 0 \\
0 & \mathrm{x}_{1} & 0 \\
0 & 0 & \mathrm{x}_{1}
\end{array}\right), \quad \mathrm{Y}=\binom{\mathrm{x}_{2}}{\mathrm{x}_{3}}
$$

Note that the number of decision variables corresponds to the number of free entries in X and Y when taking structure into account.

Example 2

Suppose that the matrix variable X is symmetric block diagonal with one 2-by-2 full block and one 2 -by- 2 scalar block, and is declared by

```
setlmis([])
X = lmivar(1,[2 1;2 0])
    :
lmis = getlmis
```

The decision variable distribution in X can be visualized interactively as follows:

```
decinfo(lmis)
There are 4 decision variables labeled x1 to x4 in this problem.
```

Matrix variable Xk of interest (enter k between 1 and 1 , or 0 to quit):
?> 1

The decision variables involved in X1 are among \{-x1,..., x4\}. Their entry-wise distribution in X 1 is as follows ($0, j>0,-j<0$ stand for $0, x j,-x j$, respectively):

X1 :

1	2	0	0
2	3	0	0
0	0	4	0
0	0	0	4

Matrix variable Xk of interest (enter k between 1 and 1 , or 0 to quit):
?> 0
See Also lmivar, mat2dec, dec2mat, decnbr, decinfo

decnbr

Purpose

Syntax
 ndec = decnbr(lmisys)

Description

Example

See Also scalar block

- Y is 2-by- 3 rectangular,
the number of decision variables is
ndec $=$ decnbr(LMIs)
ndec $=$
10 account (see decinfo for more details).
dec2mat, decinfo, mat2dec

Give the total number of decision variables in a system of LMIs

The function decnbr returns the number ndec of decision variables (free scalar variables) in the LMI problem described in lmisys. In other words, ndec is the length of the vector of decision variables.

For an LMI system lmis with two matrix variables X and Y such that

- X is symmetric block diagonal with one 2-by-2 full block, and one 2-by-2

This is exactly the number of free entries in X and Y when taking structure into
PurposeSyntax
valX = dec2mat(lmisys,decvars, X)
Description
Example See the description of feasp.
See Also mat2dec, decnbr, decinfo

Purpose Help specify $c^{T} x$ objectives for the mincx solver

Syntax $\quad[V 1, \ldots, V k]=\operatorname{defcx}(\operatorname{lmisys}, \mathrm{n}, \mathrm{X} 1, \ldots, \mathrm{Xk})$

Description

See Also mincx, decinfo

Purpose

Syntax newsys = dellmi(lmisys,n)

Remove an LMI from a given system of LMIs
dellmi deletes the n-th LMI from the system of LMIs described in lmisys. The updated system is returned in newsys.

The ranking n is relative to the order in which the LMIs were declared and corresponds to the identifier returned by newlmi. Since this ranking is not modified by deletions, it is safer to refer to the remaining LMIs by their identifiers. Finally, matrix variables that only appeared in the deleted LMI are removed from the problem.

Example

Suppose that the three LMIs

$$
\begin{aligned}
& \mathrm{A}_{1}^{\mathrm{T}} X_{1}+X_{1} A_{1}+Q_{1}<0 \\
& \mathrm{~A}_{2}^{\mathrm{T}} X_{2}+X_{2} A_{2}+Q_{2}<0 \\
& \mathrm{~A}_{3}^{\mathrm{T}} X_{3}+X_{3} A_{3}+Q_{3}<0
\end{aligned}
$$

have been declared in this order, labeled LMI1, LMI2, LMI3 with newlmi, and stored in lmisys. To delete the second LMI, type

```
lmis = dellmi(lmisys,LMI2)
```

lmis now describes the system of LMIs

$$
\begin{align*}
& \mathrm{A}_{1}^{\mathrm{T}} \mathrm{X}_{1}+\mathrm{X}_{1} \mathrm{~A}_{1}+\mathrm{Q}_{1}<0 \tag{9-4}\\
& \mathrm{~A}_{3}^{\mathrm{T}} \mathrm{X}_{3}+\mathrm{X}_{3} \mathrm{~A}_{3}+\mathrm{Q}_{3}<0 \tag{9-5}
\end{align*}
$$

and the second variable X_{2} has been removed from the problem since it no longer appears in the system (9-4)-(9-5).

To further delete (9-5), type
lmis = dellmi(lmis,LMI3)
or equivalently
lmis $=$ dellmi(lmis,3)

Note that (9-5) has retained its original ranking after the first deletion.
See Also newlmi, lmiedit, Imiinfo

Purpose
 Delete one of the matrix variables of an LMI problem

Syntax newsys = delmvar(lmisys, X)

Description

Example

See Also

Purpose

```
Syntax gopt = dhinflmi(P,r)
[gopt,K] = dhinflmi(P,r)
[gopt,K, x1, x2, y1,y2] = dhinflmi(P,r,g,tol,options)
```


Description

Reference

See Also dhinfric, hinflmi

Purpose

Riccati-based H_{∞} synthesis for discrete-time systems

Syntax
 Description

Restriction
See Also

```
gopt = dhinfric(P,r)
[gopt,K] = dhinfric(P,r)
[gopt,K,x1,x2,y1,y2] = dhinfric(P,r,gmin,gmax,tol,options)
```

dhinfric is the counterpart of hinfric for discrete-time plants $P(s)$ with equations:

$$
\begin{aligned}
x_{k+1} & =A x_{k}+B_{1} w_{k}+B_{2} u_{k} \\
z_{k} & =C_{1} x_{k}+D_{11} w_{k}+D_{12} u_{k} \\
y_{k} & =C_{2} x_{k}+D_{21} w_{k}+D_{22} u_{k} .
\end{aligned}
$$

See dnorminf for a definition of the RMS gain (H_{∞} performance) of discrete-time systems. The syntax and usage of dhinfric are identical to those of hinfric.
D_{12} and D_{21} must have full rank.
dhinflmi, hinfric

Purpose

Syntax

Description

Reference

See Also norminf

Purpose

Syntax evalsys = evallmi(lmisys, decvars) terms in the system of LMIs

Observation

Example

Given a particular instance of the decision variables, evaluate all variable
evallmi evaluates all LMI constraints for a particular instance decvars of the vector of decision variables. Recall that decvars fully determines the values of the matrix variables X_{1}, \ldots, X_{K}. The "evaluation" consists of replacing all terms involving X_{1}, \ldots, X_{K} by their matrix value. The output evalsys is an LMI system containing only constant terms.

The function evallmi is useful for validation of the LMI solvers' output. The vector returned by these solvers can be fed directly to evallmi to evaluate all variable terms. The matrix values of the left- and right-hand sides of each LMI are then returned by showlmi.
evallmi is meant to operate on the output of the LMI solvers. To evaluate all LMIs for particular instances of the matrix variables X_{1}, \ldots, X_{K}, first form the corresponding decision vector x with mat2dec and then call evallmi with x as input.

Consider the feasibility problem of finding $X>0$ such that

$$
A^{T} X A-X+I<0
$$

where $\mathrm{A}=\left(\begin{array}{rr}0.5 & -0.2 \\ 0.1 & -0.7\end{array}\right)$. This LMI system is defined by:
setlmis([])
X = lmivar(1,[2 1]) \% full symmetric X

lmiterm([$\left.\left.1 \begin{array}{lll}1 & 1 & 1 \\ 0\end{array}\right], 1\right)$ \% LMI \#1: I
lmiterm([-2 1 1 1 X],1,1) \% LMI \#2: X
lmis $=$ getlmis

To compute a solution xfeas, call feasp by
[tmin,xfeas] = feasp(lmis)

The result is

```
tmin =
    -4.7117e+00
xfeas' =
    1.1029e+02 -1.1519e+01 1.1942e+02
```

The LMI constraints are therefore feasible since tmin <0. The solution X corresponding to the feasible decision vector xfeas would be given by X = dec2mat(lmis,xfeas, X).

To check that xfeas is indeed feasible, evaluate all LMI constraints by typing

```
evals = evallmi(lmis,xfeas)
```

The left- and right-hand sides of the first and second LMIs are then given by
[lhs1,rhs1] = showlmi(evals,1)
[lhs2,rhs2] = showlmi(evals,2)
and the test
eig(lhs1-rhs1)
ans =
$-8.2229 \mathrm{e}+01$
$-5.8163 e+01$
confirms that the first LMI constraint is satisfied by xfeas.
See Also showlmi, setmvar, dec2mat, mat2dec

Purpose

Syntax

Description

Control
 Parameters

Find a solution to a given system of LMIs

```
[tmin,xfeas] = feasp(lmisys,options,target)
```

The function feasp computes a solution xfeas (if any) of the system of LMIs described by lmisys. The vector xfeas is a particular value of the decision variables for which all LMIs are satisfied.

Given the LMI system

$$
\begin{equation*}
N^{\mathrm{T}} L \mathrm{x} N \leq M^{\mathrm{T}} R(\mathrm{x}) M \tag{9-7}
\end{equation*}
$$

xfeas is computed by solving the auxiliary convex program:
Minimize t subject to $\mathcal{N}^{T} \mathcal{L}(\mathrm{x}) \mathcal{N}-\mathcal{M}^{\mathrm{T}} \mathcal{R}(\mathrm{x}) \mathcal{M} \leq \mathrm{tI}$.
The global minimum of this program is the scalar value tmin returned as first output argument by feasp. The LMI constraints are feasible if tmin $\partial 0$ and strictly feasible if $\mathrm{tmin}<0$. If the problem is feasible but not strictly feasible, tmin is positive and very small. Some post-analysis may then be required to decide whether xfeas is close enough to feasible.

The optional argument target sets a target value for tmin. The optimization code terminates as soon as a value of t below this target is reached. The default value is target $=0$.

Note that xfeas is a solution in terms of the decision variables and not in terms of the matrix variables of the problem. Use dec2mat to derive feasible values of the matrix variables from xfeas.

The optional argument options gives access to certain control parameters for the optimization algorithm. This five-entry vector is organized as follows:

- options(1) is not used
- options (2) sets the maximum number of iterations allowed to be performed by the optimization procedure (100 by default)
- options (3) resets the feasibility radius. Setting options(3) to a value $R>$ 0 further constrains the decision vector $x=\left(x_{1}, \ldots, x_{N}\right)$ to lie within the ball

$$
\sum_{i=1}^{N} x_{i}^{2}<R^{2}
$$

In other words, the Euclidean norm of xfeas should not exceed R. The feasibility radius is a simple means of controlling the magnitude of solutions. Upon termination, feasp displays the f-radius saturation, that is, the norm of the solution as a percentage of the feasibility radius R.
The default value is $R=10^{9}$. Setting options (3) to a negative value activates the "flexible bound" mode. In this mode, the feasibility radius is initially set to 10^{8}, and increased if necessary during the course of optimization

- options (4) helps speed up termination. When set to an integer value $J>0$, the code terminates if t did not decrease by more than one percent in relative terms during the last J iterations. The default value is 10 . This parameter trades off speed vs. accuracy. If set to a small value (<10), the code terminates quickly but without guarantee of accuracy. On the contrary, a large value results in natural convergence at the expense of a possibly large number of iterations.
- options(5) = 1 turns off the trace of execution of the optimization procedure. Resetting options (5) to zero (default value) turns it back on.

Setting option(i) to zero is equivalent to setting the corresponding control parameter to its default value. Consequently, there is no need to redefine the entire vector when changing just one control parameter. To set the maximum number of iterations to 10 , for instance, it suffices to type

```
options=zeros(1,5) % default value for all parameters
options(2)=10
```

When the least-squares problem solved at each iteration becomes ill conditioned, the feasp solver switches from Cholesky-based to QR-based linear algebra (see"Memory Problems" on page 9-74 for details). Since the QR mode typically requires much more memory, MATLAB may run out of memory and display the message

```
??? Error using ==> feaslv
Out of memory. Type HELP MEMORY for your options.
```

You should then ask your system manager to increase your swap space or, if no additional swap space is available, set options (4) = 1 . This will prevent switching to QR and feasp will terminate when Cholesky fails due to numerical instabilities.

Example

Consider the problem of finding $P>I$ such that

$$
\begin{align*}
& \mathrm{A}_{1}^{\mathrm{T}} \mathrm{P}+\mathrm{PA}_{1}<0 \tag{9-8}\\
& \mathrm{~A}_{2}^{\mathrm{T}} \mathrm{P}+\mathrm{PA}_{2}<0 \tag{9-9}\\
& \mathrm{~A}_{3}^{\mathrm{T}} \mathrm{P}+\mathrm{PA}_{3}<0 \tag{9-10}
\end{align*}
$$

with data

$$
\mathrm{A}_{1}=\left(\begin{array}{cc}
-1 & 2 \\
1 & -3
\end{array}\right), \quad \mathrm{A}_{2}=\left(\begin{array}{cc}
-0.8 & 1.5 \\
1.3 & -2.7
\end{array}\right), \quad \mathrm{A}_{3}=\left(\begin{array}{cc}
-1.4 & 0.9 \\
0.7 & -2.0
\end{array}\right)
$$

This problem arises when studying the quadratic stability of the polytope of matrices $\operatorname{Co}\left\{A_{1}, A_{2}, A_{3}\right\}$ (see"Quadratic Stability" on page 3-6 for details).

To assess feasibility with feasp, first enter the LMIs (9-8)-(9-10) by:

```
setlmis([])
p = lmivar(1,[2 1])
lmiterm([[1 1 1 1 p],1,a1,'s') % LMI #1
lmiterm([2 1 1 1 p],1,a2,'s') % LMI #2
lmiterm([3 1 1 p],1,a3,'s') % LMI #3
lmiterm([-4 1 1 p],1,1) % LMI #4: P
lmiterm([4 1 1 0],1) % LMI #4: I
lmis = getlmis
```

Then call feasp to find a feasible decision vector:

```
[tmin,xfeas] = feasp(lmis)
```

This returns tmin $=-3.1363$. Hence (9-8)-(9-10) is feasible and the dynamical system $\dot{\mathrm{x}}=A(t) x$ is quadratically stable for $A(t) \in \operatorname{Co}\left\{A_{1}, A_{2}, A_{3}\right\}$.

To obtain a Lyapunov matrix P proving the quadratic stability, type

```
P = dec2mat(lmis,xfeas,p)
```

This returns

$$
P=\left(\begin{array}{ll}
270.8 & 126.4 \\
126.4 & 155.1
\end{array}\right)
$$

It is possible to add further constraints on this feasibility problem. For instance, you can bound the Frobenius norm of P by 10 while asking tmin to be less than or equal to -1 . This is done by

```
[tmin,xfeas] = feasp(lmis,[0,0,10,0,0],-1)
```

The third entry 10 of options sets the feasibility radius to 10 while the third argument -1 sets the target value for tmin . This yields tmin $=-1.1745$ and a matrix P with largest eigenvalue $\lambda_{\text {max }}(P)=9.6912$.

Reference

See Also
mincx, gevp, dec2mat

Purpose

Syntax \quad| D | $=\operatorname{getdg}(\mathrm{ds}, \mathrm{i})$ |
| ---: | :--- |
| G | $=\operatorname{getdg}(\mathrm{gs}, \mathrm{i})$ |

Description

The function mustab computes the mixed- μ upper bound over a grid of frequencies fs and returns the corresponding D, G scalings compacted in two matrices ds and gs. The values of D, G at the frequency $\mathrm{fs}(\mathrm{i})$ are extracted from ds and gs by getdg.
See Also mustab

getlmis

Purpose
Syntax lmisys = getlmis

See Also
setlmis, lmivar, lmiterm, newlmi

Purpose

Generalized eigenvalue minimization under LMI constraints

Syntax
 [lopt, xopt] = gevp(lmisys, nlfc,options,linit,xinit,target)

Description

Caution

When setting up your gevp problem, be cautious to

- Always specify the linear-fractional constraints (9-13) last in the LMI system. gevp systematically assumes that the last nlfc LMI constraints are linear fractional
- Add the constraint $B(x)>0$ or any other LMI constraint that enforces it (see Remark below). This positivity constraint is required for regularity and well-posedness of the optimization problem (see the discussion in "Well-Posedness Issues" on page 8-40).

Control Parameters

Example

Given

$$
\mathrm{A}_{1}=\left(\begin{array}{cc}
-1 & 2 \\
1 & -3
\end{array}\right), \quad \mathrm{A}_{2}=\left(\begin{array}{cc}
-0.8 & 1.5 \\
1.3 & -2.7
\end{array}\right), \quad \mathrm{A}_{3}=\left(\begin{array}{cc}
-1.4 & 0.9 \\
0.7 & -2.0
\end{array}\right),
$$

consider the problem of finding a single Lyapunov function $V(x)=x^{T} P x$ that proves stability of

$$
\dot{\mathrm{x}}=A_{i} x \quad(i=1,2,3)
$$

and maximizes the decay rate $-\frac{\mathrm{dV}(\mathrm{x})}{\mathrm{dt}}$. This is equivalent to minimizing α subject to

$$
\begin{align*}
& \mathrm{I}<\mathrm{P} \tag{9-14}\\
& \mathrm{~A}_{1}^{\mathrm{T}} \mathrm{P}+\mathrm{PA}_{1}<\alpha \mathrm{P} \tag{9-15}
\end{align*}
$$

$$
\begin{align*}
& \mathrm{A}_{2}^{\mathrm{T}} \mathrm{P}+\mathrm{PA}_{2}<\alpha \mathrm{P} \tag{9-16}\\
& \mathrm{~A}_{3}^{\mathrm{T}} \mathrm{P}+\mathrm{PA}_{3}<\alpha \mathrm{P} \tag{9-17}
\end{align*}
$$

To set up this problem for gevp, first specify the LMIs (9-15)-(9-17) with $\alpha=1$:

```
setlmis([]);
p = lmivar(1,[2 1])
lemiterm([11 1 1 0],1) % P > I : I
lemiterm([ 1 1 1 1 p],1,1) % P > I : P
lemiterm([2 1 1 p],1,a1,'s') % LFC # 1 (lhs)
lemiterm([ 2 2 1 1 p],1,1) % LFC # 1 (rhs)
lemiterm([3 1 1 1 p],1,a2,'s') % LFC # 2 (lhs)
lemiterm([ }
lemiterm([4 4 1 1 p],1,a3,'s') % LFC # 3 (lhs)
lemiterm([[ 4 1 1 1 p],1,1) % LFC # 3 (rhs)
lmis = getlmis
```

Note that the linear fractional constraints are defined last as required. To minimize α subject to (9-15)-(9-17), call gevp by

```
[alpha,popt]=gevp(lmis,3)
```

This returns alpha $=-0.122$ as optimal value (the largest decay rate is therefore 0.122). This value is achieved for

$$
\mathrm{P}=\left(\begin{array}{cc}
5.58 & -8.35 \\
-8.35 & 18.64
\end{array}\right)
$$

Generalized eigenvalue minimization problems involve standard LMI constraints (9-11) and linear fractional constraints (9-13). For well-posedness, the positive definiteness of $B(x)$ must be enforced by adding the constraint $B(x)>0$ to the problem. Although this could be done automatically from inside the code, this is not desirable for efficiency reasons. For instance, the set of constraints (9-12) may reduce to a single constraint as in the example above. In this case, the single extra LMI " $P>I$ " is enough to enforce positivity of all
linear-fractional right-hand sides. It is therefore left to the user to devise the least costly way of enforcing this positivity requirement.

Reference

See Also

The solver gevp is based on Nesterov and Nemirovski's Projective Method described in

Nesterov, Y., and A. Nemirovski, Interior Point Polynomial Methods in Convex Programming: Theory and Applications, SIAM, Philadelphia, 1994.

The optimization is performed by the CMEX file fpds.mex.
dec2mat, decnbr, feasp, mincx

Purpose
 Synthesis of gain-scheduled H_{∞} controllers

Syntax
 [gopt, pdK, R, S] = hinfgs(pdP,r,gmin,tol,tolred)

Description

Given an affine parameter-dependent plant

$$
\mathrm{P}\left\{\begin{aligned}
\dot{\mathrm{x}} & =\mathrm{A}(\mathrm{p}) \mathrm{x}+\mathrm{B}_{1}(\mathrm{p}) \mathrm{w}+\mathrm{B}_{2} \mathrm{u} \\
\mathrm{z} & =\mathrm{C}_{1}(\mathrm{p}) \mathrm{x}+\mathrm{D}_{11}(\mathrm{p}) \mathrm{w}+\mathrm{D}_{12} \mathrm{u} \\
\mathrm{y} & =\mathrm{C}_{2} \mathrm{x}+\mathrm{D}_{21} \mathrm{w}+\mathrm{D}_{22} \mathrm{u}
\end{aligned}\right.
$$

where the time-varying parameter vector $p(t)$ ranges in a box and is measured in real time, hinfgs seeks an affine parameter-dependent controller

$$
K\left\{\begin{array}{l}
\dot{\zeta}=A_{K}(p) \zeta+B_{K}(p) y \\
u=C_{K}(p) \zeta+D_{K}(p) y
\end{array}\right.
$$

scheduled by the measurements of $p(t)$ and such that

- K stabilizes the closed-loop system

for all admissible parameter trajectories $p(t)$
- K minimizes the closed-loop quadratic H_{∞} performance from w to z.

The description pdP of the parameter-dependent plant P is specified with psys and the vector r gives the number of controller inputs and outputs (set $\mathrm{r}=\left[p_{2}\right.$, m2] if $y \in \mathbf{R}^{p 2}$ and $u \in \mathbf{R}^{m_{2}}$). Note that hinfgs also accepts the polytopic model of P returned, e.g., by aff2pol or sconnect.
hinfgs returns the optimal closed-loop quadratic performance gopt and a polytopic description of the gain-scheduled controller pdK. To test if a
closed-loop quadratic performance γ is achievable, set the third input gmin to γ. The arguments tol and tolred control the required relative accuracy on gopt and the threshold for order reduction (see hinflmi for details). Finally, hinfgs also returns solutions R, S of the characteristic LMI system.

Controller The gain-scheduled controller pdK is parametrized by $p(t)$ and characterized by Implementation the values $K_{\Pi_{j}}$ of $\binom{A_{K}(p) B_{K}(p)}{C_{K}(p) D_{K}(p)}$ at the corners ${ }_{j}{ }_{j}$ of the parameter box. The command
Kj = psinfo(pdK,'sys',j)
returns the j-th vertex controller $K_{\Pi_{j}}$ while

```
pv = psinfo(pdP,'par')
vertx = polydec(pv)
Pj = vertx(:,j)
```

gives the corresponding corner ${ }_{j}^{3}$ of the parameter box (pv is the parameter vector description).

The controller scheduling should be performed as follows. Given the measurements $p(t)$ of the parameters at time t,

3 Express $p(t)$ as a convex combination of the ${ }_{j}{ }_{j}$:

$$
p(t)=\alpha_{1}{ }^{3}{ }_{1}+\ldots+\alpha_{N}{ }^{3}{ }_{N}, \quad \alpha_{j} \text { Š } 0, \quad \sum_{\mathrm{i}=1}^{\mathrm{N}} \alpha_{\mathrm{j}}=1
$$

This convex decomposition is computed by polydec.
4 Compute the controller state-space matrices at time t as the convex combination of the vertex controllers $K_{\Pi_{j}}$:
$\binom{A_{K}(t) B_{K}(t)}{C_{K}(t) D_{K}(t)}=\sum_{i=1}^{N} \alpha_{j} K_{\Pi_{j}}$.
5 Use $A_{K}(t), \mathrm{B}_{K}(t), \mathrm{C}_{K}(t), \mathrm{D}_{K}(t)$ to update the controller state-space equations.
ReferenceApkarian, P., P. Gahinet, and G. Becker, "Self-Scheduled H_{∞} Control of LinearParameter-Varying Systems," submitted to Automatica, October 1995.Becker, G., Packard, P., "Robust Performance of Linear-ParametricallyVarying Systems Using Parametrically-Dependent Linear Feedback," Systemsand Control Letters, 23 (1994), pp. 205-215.Packard, A., "Gain Scheduling via Linear Fractional Transformations," Syst.Contr. Letters, 22 (1994), pp. 79-92.
Example See "Design Example" on page 7-10.
See Also psys, pvec, pdsimul, polydec, hinflmi

Purpose
LMI-based H_{∞} synthesis for continuous-time plants

Syntax

```
gopt = hinflmi(P,r)
[gopt,K] = hinflmi(P,r)
[gopt,K,x1,x2,y1,y2] = hinflmi(P,r,g,tol,options)
```

Description hinflmi computes an internally stabilizing controller $K(s)$ that minimizes the closed-loop H_{∞} performance in the control loop

The H_{∞} performance is the RMS gain of the closed-loop transfer function $F(P, K)$ from w to z. This function implements the LMI-based approach to H_{∞} synthesis. The SYSTEM matrix P contains a state-space realization of the plant $P(s)$ and the row vector r specifies the number of measurements and controls (set $r=\left[p_{2} \mathrm{~m} 2\right]$ when $y \in \mathbf{R}^{p_{2}}$ and $u \in \mathbf{R}^{m_{2}}$).

The optimal H_{∞} performance gopt and an optimal H_{∞} controller K are returned by

```
[gopt,K] = hinflmi(P,r)
```

Alternatively, a suboptimal controller K that guarantees $\|F(P, K)\|_{\infty}<\mathrm{g}$ is obtained with the syntax

```
[gopt,K] = hinflmi(P,r,g)
```

The optional argument tol specifies the relative accuracy on the computed optimal performance gopt. The default value is 10^{-2}. Finally,

```
[gopt,K,x1,x2,y1,y2] = hinflmi(P,r)
```

also returns solutions $R=\mathrm{x} 1$ and $S=\mathrm{y} 1$ of the characteristic LMIs for $\gamma=$ gopt (see "Practical Considerations" on page 6-18 for details).
Control Parameters
Remark
Reference
See Also

Purpose
Syntax [gopt, h2opt, K, R, S] = hinfmix ($\mathrm{P}, \mathrm{r}, \mathrm{obj}$, region, dkbnd,tol)
Description
Mixed H_{2} / H_{∞} synthesis with pole placement constraints
hinfmix performs multi-objective output-feedback synthesis. The control problem is sketched in Figure 9.1.

Figure 9-1: Mixed H_{2} / H_{∞} synthesis
If $T_{\infty}(s)$ and $T_{2}(s)$ denote the closed-loop transfer functions from w to z_{∞} and z_{2}, respectively, hinfmix computes a suboptimal solution of the following synthesis problem:

Design an LTI controller $K(s)$ that minimizes the mixed H_{2} / H_{∞} criterion

$$
\alpha\left\|\mathrm{T}_{\infty}\right\|_{\infty}^{2}+\beta\left\|\mathrm{T}_{2}\right\|_{2}^{2}
$$

subject to

- $\left\|T_{\infty}\right\|_{\infty}<\gamma_{0}$
- $\left\|T_{2}\right\|_{2}<v_{0}$
- The closed-loop poles lie in some prescribed LMI region D.

Recall that $\|\cdot\|_{\infty}$ and $\|\cdot\|_{2}$ denote the H_{∞} norm (RMS gain) and H_{2} norm of transfer functions. More details on the motivations and statement of this problem can be found in "Multi-Objective $\mathrm{H} \bullet$ Synthesis" on page 5-15.

On input, P is the SYSTEM matrix of the plant $P(s)$ and r is a three-entry vector listing the lengths of z_{2}, y, and u. Note that z_{∞} and/or z_{2} can be empty. The
four-entry vector obj $=\left[\gamma_{0}, v_{0}, \alpha, \beta\right]$ specifies the H_{2} / H_{∞} constraints and trade-off criterion, and the remaining input arguments are optional:

- region specifies the LMI region for pole placement (the default region = [] is the open left-half plane). Use lmireg to interactively build the LMI region description region
- dkbnd is a user-specified bound on the norm of the controller feedthrough matrix D_{K} (see the definition in "LMI Formulation" on page $5-16$). The default value is 100 . To make the controller $K(s)$ strictly proper, set dkbnd = 0.
- tol is the required relative accuracy on the optimal value of the trade-off criterion (the default is 10^{-2}).
The function hinfmix returns guaranteed H_{∞} and H_{2} performances gopt and h2opt as well as the SYSTEM matrix K of the LMI-optimal controller. You can also access the optimal values of the LMI variables R, S via the extra output arguments R and S.

A variety of mixed and unmixed problems can be solved with hinfmix (see list in "The Function hinfmix" on page 5-20). In particular, you can use hinfmix to perform pure pole placement by setting obj $=\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$. Note that both z_{∞} and z_{2} can be empty in such case.

Example
 Reference

See the example in"H•Synthesis" on page 5-10.
Chilali, M., and P. Gahinet, " H_{∞} Design with Pole Placement Constraints: An LMI Approach," to appear in IEEE Trans. Aut. Contr., 1995.

Scherer, C., "Mixed $H_{2} H_{\infty}$ Control," to appear in Trends in Control: A European Perspective, volume of the special contributions to the ECC 1995.

See Also lmireg, hinflmi, msfsyn
Purpose
Syntax
Description

See Also
 See Also

Extract the state-space matrices A, B_{1}, B_{2}, \ldots from the SYSTEM matrix representation of an H_{∞} plant

```
[a,b1,b2,c1,c2,d11,d12,d21,d22] = hinfpar(P,r)
b1 = hinfpar(P,r,'b1')
```

In H_{∞} control problems, the plant $P(s)$ is specified by its state-space equations

$$
\begin{aligned}
& \dot{\mathrm{x}}=A x+B_{1} w+B_{2} u \\
& z=C_{1} x+D_{11} w+D_{12} u \\
& y=C_{2} x+D_{21} w+D_{22} u
\end{aligned}
$$

or their discrete-time counterparts. For design purposes, this data is stored in a single SYSTEM matrix P created by

$$
P=\text { ltisys(a,[b1 b2],[c1;c2],[d11 d12;d21 d22]) }
$$

The function hinfpar retrieves the state-space matrices A, B_{1}, B_{2}, \ldots from P . The second argument r specifies the size of the D_{22} matrix. Set $r=$ [ny, nu] where ny is the number of measurements (length of y) and nu is the number of controls (length of u).
The syntax
hinfpar($\mathrm{P}, \mathrm{r}, \mathrm{B} 1^{\prime}$)
can be used to retrieve just the B_{1} matrix. Here the third argument should be one of the strings 'a', 'b1', 'b2',....

Purpose

Syntax

Description

Riccati-based H_{∞} synthesis for continuous-time plants

```
gopt = hinfric(P,r) [gopt,K] = hinfric(P,r)
    [gopt,K,x1,x2,y1,y2,Preg] = hinfric(P,r,gmin,gmax,...
    tol,options)
```

hinfric computes an H_{∞} controller $K(s)$ that internally stabilizes the control loop

and minimizes the RMS gain (H_{∞} performance) of the closed-loop transfer function $T_{w z}$. The function hinfric implements the Riccati-based approach.

The SYSTEM matrix P contains a state-space realization

$$
\begin{aligned}
& \dot{\mathrm{x}}=A x+B_{1} w+B_{2} u \\
& z=C_{1} x+D_{11} w+D_{12} u \\
& y=C_{2} x+D_{21} w+D_{22} u
\end{aligned}
$$

of the plant $P(s)$ and is formed by the command

```
P = ltisys(a,[b1 b2],[c1;c2],[d11 d12;d21 d22])
```

The row vector r specifies the dimensions of D_{22}. Set $r=\left[p_{2}\right.$ m2] when $y \in \mathbf{R}^{p 2}$ and $u \in \mathbf{R}^{m_{2}}$.

To minimize the H_{∞} performance, call hinfric with the syntax

```
gopt = hinfric(P,r)
```


Control
 Parameters

This returns the smallest achievable RMS gain from w to z over all stabilizing controllers $K(s)$. An H_{∞}-optimal controller $K(s)$ with performance gopt is computed by

```
[gopt,K] = hinfric(P,r)
```

The H_{∞} performance can also be minimized within prescribed bounds gmin and gmax and with relative accuracy tol by typing

```
[gopt,K] = hinfric(P,r,gmin,gmax,tol)
```

Setting both gmin and gmax to $\gamma>0$ tests whether the H_{∞} performance γ is achievable and returns a controller $K(s)$ such that $\left\|T_{w z}\right\|_{\infty}<\gamma$ when γ is achievable. Setting gmin or gmax to zero is equivalent to specifying no lower or upper bound.
Finally, the full syntax

```
[gopt,K,x1,x2,y1,y2,Preg] = hinfric(P,r)
```

also returns the solutions $X_{\infty}=\mathrm{x} 2 / \mathrm{x} 1$ and $Y_{\infty}=\mathrm{y} 2 / \mathrm{y} 1$ of the H_{∞} Riccati equations for $\gamma=$ gopt, as well as the regularized plant Preg used to compute the controller in singular problems.

Given the controller SYSTEM matrix K returned by hinfric, a realization of the closed-loop transfer function from w to z is given by
Twz = slft(P,K)
hinfric automatically regularizes singular H_{∞} problems and computes reduced-order controllers when the matrix $I-\gamma^{-2} X_{\infty} Y_{\infty}$ is nearly singular. The optional input options gives access to the control parameters that govern the regularization and order reduction:

- options(1) controls the amount of regularization used when D_{12} or D_{21} is rank-deficient. This tuning parameter is valued in $[0,1]$ with default value 0 . Increasing options (1) augments the amount of regularization. This generally results in less control effort and in controller state-space matrices of smaller norm, possibly at the expense of a higher closed-loop RMS gain.
- options (2) controls the amount of regularization used when $P_{12}(s)$ or $P_{21}(s)$ has $j \omega$-axis zero(s). Such problems are regularized by replacing A by $A+\varepsilon I$ where ε is a small positive number. Increasing options (2) increases ε and improves the closed-loop damping. Beware that making ε too large may
destroy stabilizability or detectability when the plant $P(s)$ includes shaping filters with poles close to the imaginary axis. In such cases the optimal H_{∞} performance will be infinite (see "Practical Considerations" on page 6-18 for more details).
- when options(3) is set to $\varepsilon>0$, reduced-order synthesis is performed whenever

$$
\rho\left(X_{\infty} Y_{\infty}\right) \check{S}(1-\varepsilon) \text { gopt }^{2}
$$

The default value is $\varepsilon=10^{-3}$

$$
\text { Remark } \quad \text { Setting gmin }=\text { gmax }=\text { Inf computes the optimal LQG controller. }
$$

Example

Reference Doyle, J.C., Glover, K., Khargonekar, P., and Francis, B., "State-Space Solutions to Standard H_{2} and H_{∞} Control Problems," IEEE Trans. Aut. Contr., AC-34 (1989), pp. 831-847.
Gahinet, P., and A.J. Laub, "Reliable Computation of flopt in Singular H_{∞} Control," in Proc. Conf. Dec. Contr., Lake Buena Vista, Fl., 1994, pp. 15271532.
Gahinet, P., "Explicit Controller Formulas for LMI-based H_{∞} Synthesis," in Proc. Amer. Contr. Conf., 1994, pp. 2396-2400.
See Also hinflmi, hinfmix, dhinfric, ltisys, slft

Purpose
Specify or display systems of LMIs as MATLAB expressions

Syntax lmiedit

Description
lmiedit is a graphical user interface for the symbolic specification of LMI
problems. Typing lmiedit calls up a window with two editable text areas and various pushbuttons. To specify an LMI system,

1 Give it a name (top of the window).
2 Declare each matrix variable (name and structure) in the upper half of the window. The structure is characterized by its type (S for symmetric block diagonal, R for unstructured, and G for other structures) and by an additional structure matrix similar to the second input argument of 1mivar. Please use one line per matrix variable in the text editing areas.
3 Specify the LMIs as MATLAB expressions in the lower half of the window. An LMI can stretch over several lines. However, do not specify more than one LMI per line.

Once the LMI system is fully specified, you can perform the following operations by pressing the corresponding pushbutton:

- Visualize the sequence of lmivar/lmiterm commands needed to describe this LMI system (view commands buttons)
- Conversely, display the symbolic expression of the LMI system produced by a particular sequence of lmivar/lmiterm commands (click the describe... buttons)
- Save the symbolic description of the LMI system as a MATLAB string (save button). This description can be reloaded later on by pressing the load button
- Read a sequence of lmivar/lmiterm commands from a file (read button). The matrix expression of the LMI system specified by these commands is then displayed by clicking on describe the LMIs...
- Write in a file the sequence of 1 mivar/lmiterm commands needed to specify a particular LMI system (write button)
- Generate the internal representation of the LMI system by pressing create. The result is written in a MATLAB variable with the same name as the LMI system
Remark Editable text areas have built-in scrolling capabilities. To activate the scroll
Examplemode, click in the text area, maintain the mouse button down, and move themouse up or down. The scroll mode is only active when all visible lines havebeen used.
An example and some limitations of 1miedit can be found in "The LMI Editor lmiedit" on page 8-16.

See Also
See Also
lmivar, lmiterm, newlmi, lmiinfoPurposeSyntax

lmiinfo(lmisys)

Interactively retrieve information about the variables and term content of LMIs
lmiinfo(lmisys)
lmiinfo provides qualitative information about the system of LMIs lmisys. This includes the type and structure of the matrix variables, the number of diagonal blocks in the inner factors, and the term content of each block.
lmiinfo is an interactive facility where the user seeks specific pieces of information. General LMIs are displayed as
$N^{\prime} * L(x) * N<M^{\prime} * R(x) * M$
where N, M denote the outer factors and L, R the left and right inner factors. If the outer factors are missing, the LMI is simply written as

$$
L(x)<R(x)
$$

If its right-hand side is zero, it is displayed as

$$
N^{\prime} * L(x) * N<0
$$

Information on the block structure and term content of $L(x)$ and $R(x)$ is also available. The term content of a block is symbolically displayed as

```
C1 + A1*X2*B1 + B1'*X2*A1' + a2*X1 + x3*Q1
```

with the following conventions:

- X1, X2, x3 denote the problem variables. Upper-case X indicates matrix variables while lower-case x indicates scalar variables. The labels $1,2,3$ refer to the first, second, and third matrix variable in the order of declaration.
- Cj refers to constant terms. Special cases are I and I (I = identity matrix).
- Aj, Bj denote the left and right coefficients of variable terms. Lower-case letters such as a2 indicate a scalar coefficient.
- $Q j$ is used exclusively with scalar variables as in $\times 3 * Q 1$.

The index j in $\mathrm{Aj}, \mathrm{Bj}, \mathrm{Cj}, \mathrm{Qj}$ is a dummy label. Hence C 1 may appear in several blocks or several LMIs without implying any connection between the corresponding constant terms. Exceptions to this rule are the notations
$A 1^{*} X 2 * A 1^{\prime}$ and $A 1 * X 2 * B 1+B 1 ' * X 2{ }^{\prime *} A 1^{\prime}$ which indicate symmetric terms and symmetric pairs in diagonal blocks.

Example

Consider the LMI

$$
0 ð\left(\begin{array}{cr}
-2 \mathrm{X}+\mathrm{A}^{\mathrm{T}} \mathrm{YB}+\mathrm{B}^{\mathrm{T}} \mathrm{Y}^{\mathrm{T}} \mathrm{~A}+\mathrm{I} \mathrm{XC} \\
\mathrm{C}^{\mathrm{T}} \mathrm{X} & -\mathrm{ZI}
\end{array}\right)
$$

where the matrix variables are X of Type $1, Y$ of Type 2, and z scalar. If this LMI is described in lmis, information about X and the LMI block structure can be obtained as follows:

```
lmiinfo(lmis)
```


LMI ORACLE

```
This is a system of 1 LMI with 3 variable matrices
```

Do you want information on
(v) matrix variables (l) LMIs (q) quit
?> V

```
Which variable matrix (enter its index k between 1 and 3) ? 1
    X1 is a 2x2 symmetric block diagonal matrix
        its (1,1)-block is a full block of size 2
```

This is a system of 1 LMI with 3 variable matrices
Do you want information on
(v) matrix variables (l) LMIs (q) quit
?> 1
Which LMI (enter its number k between 1 and 1) ? 1
This LMI is of the form

```
    0<R(x)
where the inner factor(s) has 2 diagonal block(s)
Do you want info on the right inner factor ?
    (w) whole factor (b) only one block
    (o) other LMI (t) back to top level
?> W
Info about the right inner factor
    block (1,1) : I + a1*X1 + A2*X2*B2 + B2'*X2'*A2'
    block (2,1) : A3*X1
    block (2,2) : x3*A4
    (w) whole factor (b) only one block
    (o) other LMI (t) back to top level
This is a system of 1 LMI with 3 variable matrices
Do you want information on
    (v) matrix variables (l) LMIs (q) quit
?> q
It has been a pleasure serving you!
```

Note that the prompt symbol is ?> and that answers are either indices or letters. All blocks can be displayed at once with option (w), or you can prompt for specific blocks with option (b).

Remark
See Also
lmiinfo does not provide access to the numerical value of LMI coefficients.
decinfo, lminbr, matnbr, decnbr

Purpose	Return the number of LMIs in an LMI system
Syntax	$\mathrm{k}=$ lminbr(lmisys)
Description	lminbr returns the number k of linear matrix inequalities in the LMI problem described in lmisys.
See Also	lmiinfo, matnbr

Purpose

Syntax

Description

See Also
msfsyn, hinfmix

Purpose

Syntax
 lmiterm(termID, $A, B, f l a g)$

Description
Specify the term content of LMIs
lmiterm specifies the term content of an LMI one term at a time. Recall that LMI term refers to the elementary additive terms involved in the block-matrix expression of the LMI. Before using lmiterm, the LMI description must be initialized with setlmis and the matrix variables must be declared with lmivar. Each lmiterm command adds one extra term to the LMI system currently described.

LMI terms are one of the following entities:

- outer factors
- constant terms (fixed matrices)
- variable terms $A X B$ or $A X^{T} B$ where X is a matrix variable and A and B are given matrices called the term coefficients.

When describing an LMI with several blocks, remember to specify only the terms in the blocks on or below the diagonal (or equivalently, only the terms in blocks on or above the diagonal). For instance, specify the blocks (1,1), (2,1), and $(2,2)$ in a two-block LMI.

In the calling of limterm, termID is a four-entry vector of integers specifying the term location and the matrix variable involved.

$$
\operatorname{termID}(1)=\left\{\begin{array}{l}
+p \\
-p
\end{array}\right.
$$

where positive p is for terms on the left-hand side of the p-th LMI and negative p i s for terms on the right-hand side of the p-th LMI.
Recall that, by convention, the left-hand side always refers to the smaller side of the LMI. The index p is relative to the order of declaration and corresponds to the identifier returned by newlimi.
$\operatorname{termID}(2: 3)= \begin{cases}{[0,0]} & \text { for outer factors } \\ {[i, j]} & \text { for terms in the }(i, j) \text {-th } \\ & \text { block of the left or right inner factor }\end{cases}$
$\operatorname{termID}(4)=\left\{\begin{array}{c}0 \text { for outer factors } \\ \mathrm{x} \text { for variable terms } A X B \\ -\mathrm{x} \text { for variable terms } A X^{T} B\end{array}\right.$
where x is the identifier of the matrix variable X as returned by lmivar. The arguments A and B contain the numerical data and are set according to:

Type of Term	A	B
outer factor N	matrix value of N	omit
constant term C	matrix value of C	omit
variable term	matrix value of A	matrix value of B $(1$ if B is absent $)$

Note that identity outer factors and zero constant terms need not be specified.
The extra argument flag is optional and concerns only conjugated expressions of the form

$$
(A X B)+(A X B)^{T}=A X B+B^{T} X^{(T)} A^{T}
$$

in diagonal blocks. Setting flag = 's' allows you to specify such expressions with a single lmiterm command. For instance,

```
lmiterm([1 1 1 X],A,1,'s')
```

adds the symmetrized expression $A X+X^{T} A^{T}$ to the $(1,1)$ block of the first LMI and summarizes the two commands

```
lmiterm([1 1 1 1 X],A,1)
lmiterm([11 1 1 X X],1,A')
```

Aside from being convenient, this shortcut also results in a more efficient representation of the LMI.

Example

See Also

Consider the LMI

$$
\left(\begin{array}{cc}
2 \mathrm{AX}_{2} \mathrm{~A}^{\mathrm{T}}-\mathrm{x}_{3} \mathrm{E}+\mathrm{DD}^{\mathrm{T}} & \mathrm{~B}^{\mathrm{T}} \mathrm{X}_{1} \\
\mathrm{X}_{1}^{\mathrm{T}} \mathrm{~B} & -\mathrm{I}
\end{array}\right)<\mathrm{M}^{\mathrm{T}}\left(\begin{array}{cc}
\mathrm{CX}_{1} \mathrm{C}^{\mathrm{T}}+\mathrm{CX}_{1}^{\mathrm{T}} \mathrm{C}^{\mathrm{T}} & 0 \\
0 & -\mathrm{fX}_{2}
\end{array}\right) \mathrm{M}
$$

where X_{1}, X_{2} are matrix variables of Types 2 and 1 , respectively, and x_{3} is a scalar variable (Type 1).

After initializing the LMI description with setlmis and declaring the matrix variables with lmivar, the terms on the left-hand side of this LMI are specified by:

```
lmiterm([1 1 1 1 X2],2*A,A') % 2*A*X2*A'
lmiterm([11 1 1 x3],-1,E) % -x3*E
lmiterm([11 1 1 1 0],D*D') % D*D'
lmiterm([11 2 1 -X1],1,B) % X1'*B
lmiterm([1 2 2 0],-1) %-I
```

Here X1, X2, X3 should be the variable identifiers returned by lmivar.
Similarly, the term content of the right-hand side is specified by:

```
lmiterm([-1 0 0 0],M) % outer factor M
lmiterm([-1 1 1 1 X1],C,C','s') % C*X1*C'+C*X1'*C'
lmiterm([-1 2 2 X2],-f,1) % -f*X2
```

Note that $C X_{1} C^{T}+C \mathrm{X}_{1}^{\mathrm{T}} C^{T}$ is specified by a single lmiterm command with the flag ' s ' to ensure proper symmetrization.
setlmis, lmivar, getlmis, lmiedit, newlmi

Purpose

Syntax

Description

Specify the matrix variables in an LMI problem

```
X = lmivar(type,struct)
[X,n,sX] = lmivar(type,struct)
```

lmivar defines a new matrix variable X in the LMI system currently described. The optional output X is an identifier that can be used for subsequent reference to this new variable.

The first argument type selects among available types of variables and the second argument struct gives further information on the structure of X depending on its type. Available variable types include:
type=1: Symmetric matrices with a block-diagonal structure. Each diagonal block is either full (arbitrary symmetric matrix), scalar (a multiple of the identity matrix), or identically zero.

If X has R diagonal blocks, struct is an R-by- 2 matrix where

- struct $(r, 1)$ is the size of the r-th block
- struct $(r, 2)$ is the type of the r-th block (1 for full, 0 for scalar, 1 for zero block).
type=2: Full m-by- n rectangular matrix. Set struct $=[m, n]$ in this case.
type=3: Other structures. With Type 3, each entry of X is specified as zero or $\pm x_{n}$ where x_{n} is the n-th decision variable.

Accordingly, struct is a matrix of the same dimensions as X such that

- $\operatorname{struct}(\mathrm{i}, \mathrm{j})=0$ if $X(i, j)$ is a hard zero
- $\operatorname{struct}(\mathrm{i}, \mathrm{j})=\mathrm{n}$ if $X(i, j)=x_{n}$ $\operatorname{struct}(\mathrm{i}, \mathrm{j})=\mathrm{n}$ if $X(i, j)=-x_{n}$

Sophisticated matrix variable structures can be defined with Type 3 . To specify a variable X of Type 3 , first identify how many free independent entries are involved in X. These constitute the set of decision variables associated with X. If the problem already involves n decision variables, label the new free variables as x_{n+1}, \ldots, x_{n+p}. The structure of X is then defined in terms of x_{n+1}, \ldots, x_{n+p} as indicated above. To help specify matrix variables of Type 3, lmivar optionally returns two extra outputs: (1) the total number n of scalar decision variables used so far and (2) a matrix sX showing the entry-wise
dependence of X on the decision variables x_{1}, \ldots, x_{n}. For more details, see Example 2 below and "Structured Matrix Variables" on page 8-33.

Example 1 Consider an LMI system with three matrix variables X_{1}, X_{2}, X_{3} such that

- X_{1} is a 3×3 symmetric matrix (unstructured),
- X_{2} is a 2×4 rectangular matrix (unstructured),
- $X_{3}=$

$$
\left(\begin{array}{ccc}
\Delta & 0 & 0 \\
0 & \delta_{1} & 0 \\
0 & 0 & \delta_{2} I_{2}
\end{array}\right)
$$

where Δ is an arbitrary 5×5 symmetric matrix, δ_{1} and δ_{2} are scalars, and I_{2} denotes the identity matrix of size 2 .

These three variables are defined by

```
setlmis([])
X1 = lmivar(1,[3 1]) % Type 1
X2 = lmivar(2,[2 4]) % Type 2 of dim. 2x4
X3 = lmivar(1,[5 1;1 0;2 0]) % Type 1
```

The last command defines X_{3} as a variable of Type 1 with one full block of size 5 and two scalar blocks of sizes 1 and 2, respectively.

Example 2

Combined with the extra outputs n and sX of lmivar, Type 3 allows you to specify fairly complex matrix variable structures. For instance, consider a matrix variable X with structure

$$
\mathrm{X}=\left(\begin{array}{cc}
\mathrm{X}_{1} & 0 \\
0 & \mathrm{X}_{2}
\end{array}\right)
$$

where X_{1} and X_{2} are 2-by-3 and 3-by-2 rectangular matrices, respectively. You can specify this structure as follows:

1 Define the rectangular variables X_{1} and X_{2} by
setlmis([])
[X1,n,sX1] = lmivar(2,[2 3])

```
[X2,n,sX2] = lmivar(2,[3 2])
```

The outputs sX1 and sX2 give the decision variable content of X_{1} and X_{2} : sX1

```
sX1 =
    1 2 3
    4 5 6
```

sX2
sX2 =
$7 \quad 8$
$9 \quad 10$
$11 \quad 12$

For instance, $s \times 2(1,1)=7$ means that the $(1,1)$ entry of X_{2} is the seventh decision variable.
2 Use Type 3 to specify the matrix variable X and define its structure in terms of those of X_{1} and X_{2} :
[$\mathrm{X}, \mathrm{n}, \mathrm{sX}$] = lmivar(3,[sX1,zeros(2);zeros(3),sX2])
The resulting variable X has the prescribed structure as confirmed by sX
sX =
$\begin{array}{lllll}1 & 2 & 3 & 0 & 0\end{array}$
$4 \quad 5 \quad 6 \quad 0 \quad 0$
$\begin{array}{lllll}0 & 0 & 0 & 7 & 8\end{array}$
$\begin{array}{lllll}0 & 0 & 0 & 9 & 10\end{array}$
$\begin{array}{lllll}0 & 0 & 0 & 11 & 12\end{array}$
See Also
setlmis, lmiterm, getlmis, lmiedit, skewdec, symdec, delmvar, setmvar
PurposeSyntax
$[a, b, c, d, e]=$ ltiss(sys)
Description
Example
Important
See Also ltisys, ltitf, sinfo

Purpose
Pack the state-space realization (A, B, C, D, E) into a single SYSTEM matrix

Syntax	sys = ltisys(a)
	sys = ltisys(a,e)
	sys = litisys(a, b, c)
	sys = ltisys(a,b, c, d)
	sys = ltisys(a, b, c, d, e)
	sys = ltisys('tf',num,den)

Description
For continuous-time systems,

$$
E \dot{\mathrm{x}}=A x+B u, \quad y=C x+D u
$$

or discrete-time systems

$$
E x_{k+1}=A x_{k}+B u_{k}, \quad y_{k}=C x_{k}+D u_{k},
$$

ltisys stores A, B, C, D, E into a single matrix sys with structure

The upper right entry n gives the number of states (i.e., $A \in \mathrm{R}^{n} \times^{n}$). This data structure is called a SYSTEM matrix. When omitted, d and e are set to the default values $D=0$ and $E=I$.

The syntax sys $=$ ltisys (a) specifies the autonomous system $\dot{\mathrm{x}}=A x$ while sys $=1$ tisys (a,e) specifies $E \dot{\mathrm{x}}=A x$. Finally, you can specify SISO systems by their transfer function

$$
G(s)=\frac{\mathrm{n}(\mathrm{~s})}{\mathrm{d}(\mathrm{~s})}
$$

The syntax is then

```
sys = ltisys('tf',num,den)
```

where num and den are the vectors of coefficients of the polynomials $n(s)$ and $d(s)$ in descending order.

Examples

The SYSTEM matrix representation of the descriptor system

$$
\left\{\begin{aligned}
\varepsilon \dot{x} & =-x+2 u \\
y & =x
\end{aligned}\right.
$$

is created by
sys = ltisys(-1,2,1,0,eps)

Similarly, the SISO system with transfer function $G(s)=\frac{\mathrm{s}+4}{\mathrm{~s}+7}$ is specified by sys = ltisys('tf',[14],[17])

See Also
ltiss, ltitf, sinfo

Purpose
 Compute the transfer function of a SISO system

Syntax [num,den] = ltitf(sys)

Description

Example

See Also

Given a single-input/single-output system defined in the SYSTEM matrix sys, ltitf returns the numerator and denominator of its transfer function

$$
G(s)=\frac{\mathrm{n}(\mathrm{~s})}{\mathrm{d}(\mathrm{~s})}
$$

The output arguments num and den are vectors listing the coefficients of the polynomials $n(s)$ and $d(s)$ in descending order. An error is issued if sys is not a SISO system.

The transfer function of the system

$$
\dot{\mathrm{x}}=-x+2 u, \quad y=x-1
$$

is given by

```
sys = ltisys(-1,2,1,-1)
[n,d] = ltitf(sys)
n =
    -1 1
d =
    1
```

The vectors n and d represent the function

$$
\mathrm{G}(\mathrm{~s})=\frac{-\mathrm{s}+1}{\mathrm{~s}+1}
$$

ltisys, ltiss, sinfo

Purpose

Syntax magshape

Description

Remark See sderiv for the specification of nonproper shaping filters with a derivative action.

Acknowledgment

See Also sderiv, frfit,mrfit

Purpose	Return the number of matrix variables in a system of LMIs
Syntax	$\mathrm{K}=$ matnbr(lmisys)
Description	matnbr returns the number K of matrix variables in the LMI problem described by lmisys.
See Also	decnbr, lmiinfo, decinfo

Purpose

Syntax

Description

Example

Return the vector of decision variables corresponding to particular values of the matrix variables

```
decvec = mat2dec(lmisys, X1, X2, X3, ...)
```

Given an LMI system lmisys with matrix variables X_{1}, \ldots, X_{K} and given values $\mathrm{X} 1, \ldots, \mathrm{Xk}$ of X_{1}, \ldots, X_{K}, mat2dec returns the corresponding value decvec of the vector of decision variables. Recall that the decision variables are the independent entries of the matrices X_{1}, \ldots, X_{K} and constitute the free scalar variables in the LMI problem.

This function is useful, for example, to initialize the LMI solvers mincx or gevp. Given an initial guess for X_{1}, \ldots, X_{K}, mat2dec forms the corresponding vector of decision variables xinit.

An error occurs if the dimensions and structure of $\mathrm{X} 1, \ldots, \mathrm{Xk}$ are inconsistent with the description of X_{1}, \ldots, X_{K} in lmisys.

Consider an LMI system with two matrix variables X and Y such that

- X is A symmetric block diagonal with one 2-by-2 full block and one 2-by-2 scalar block
- Y is a 2-by-3 rectangular matrix

Particular instances of X and Y are

$$
\mathrm{X}_{0}=\left(\begin{array}{cccc}
1 & 3 & 0 & 0 \\
3 & -1 & 0 & 0 \\
0 & 0 & 5 & 0 \\
0 & 0 & 0 & 5
\end{array}\right), \quad \mathrm{Y}_{0}=\left(\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)
$$

and the corresponding vector of decision variables is given by

```
decv = mat2dec(lmisys,XO,YO)
decv'
ans =
    1 3 - -1 5 1 1 2 3 4 5 6
```

Note that decv is of length 10 since Y has 6 free entries while X has 4 independent entries due to its structure. Use decinfo to obtain more information about the decision variable distribution in X and Y.

See Also dec2mat, decinfo, decnbr

Purpose

Syntax

Description

Control
Parameters

Minimize a linear objective under LMI constraints

```
[copt,xopt] = mincx(lmisys,c,options,xinit,target)
```

The function mincx solves the convex program

$$
\begin{equation*}
\text { ninimize } c^{\mathrm{T}} \mathrm{x} \text { subject to } \mathcal{N}^{\mathrm{F}} \mathcal{L}(\mathrm{x}) \mathcal{N} \leq \mathcal{M}^{\mathrm{T}} \mathcal{R}(\mathrm{x}) \mathcal{M} \tag{9-18}
\end{equation*}
$$

where x denotes the vector of scalar decision variables.
The system of LMIs (9-18) is described by lmisys. The vector c must be of the same length as x. This length corresponds to the number of decision variables returned by the function decnbr. For linear objectives expressed in terms of the matrix variables, the adequate c vector is easily derived with defcx.
The function mincx returns the global minimum copt for the objective $c^{T} x$, as well as the minimizing value xopt of the vector of decision variables. The corresponding values of the matrix variables is derived from xopt with dec2mat.

The remaining arguments are optional. The vector xinit is an initial guess of the minimizer xopt. It is ignored when infeasible, but may speed up computations otherwise. Note that xinit should be of the same length as c. As for target, it sets some target for the objective value. The code terminates as soon as this target is achieved, that is, as soon as some feasible x such that $c^{T} x$ ठ target is found. Set options to [] to use xinit and target with the default options.

The optional argument options gives access to certain control parameters of the optimization code. In mincx, this is a five-entry vector organized as follows:

- options(1) sets the desired relative accuracy on the optimal value lopt (default = 10^{-2}).
- options (2) sets the maximum number of iterations allowed to be performed by the optimization procedure (100 by default).
- options (3) sets the feasibility radius. Its purpose and usage are as for feasp.
- options (4) helps speed up termination. If set to an integer value $J>0$, the code terminates when the objective $c^{T} x$ has not decreased by more than the desired relative accuracy during the last J iterations.
- options(5) = 1 turns off the trace of execution of the optimization procedure. Resetting options (5) to zero (default value) turns it back on.

Setting option(i) to zero is equivalent to setting the corresponding control parameter to its default value. See feasp for more detail.

Tip for

 Speed-UpMemory Problems

In LMI optimization, the computational overhead per iteration mostly comes from solving a least-squares problem of the form

$$
\min _{x}\|A x-b\|
$$

where x is the vector of decision variables. Two methods are used to solve this problem: Cholesky factorization of $A^{T} A$ (default), and QR factorization of A when the normal equation becomes ill conditioned (when close to the solution typically). The message

```
* switching to QR
```

is displayed when the solver has to switch to the QR mode.
Since QR factorization is incrementally more expensive in most problems, it is sometimes desirable to prevent switching to QR. This is done by setting options (4) = 1. While not guaranteed to produce the optimal value, this generally achieves a good trade-off between speed and accuracy.

QR-based linear algebra (see above) is not only expensiveLMI solvers,memory shortagememory shortage in terms of computational overhead, but also in terms of memory requirement. As a result, the amount of memory required by QR may exceed your swap space for large problems with numerous LMI constraints. In such case, MATLAB issues the error

```
??? Error using ==> pds
Out of memory. Type HELP MEMORY for your options.
```

You should then ask your system manager to increase your swap space or, if no additional swap space is available, set options(4) $=1$. This will prevent
switching to QR and mincx will terminate when Cholesky fails due to numerical instabilities.

Example

See "Example 8.2" on page 8-23.

Reference

The solver mincx implements Nesterov and Nemirovski's Projective Method as described in

Nesterov, Yu, and A. Nemirovski, Interior Point Polynomial Methods in Convex Programming: Theory and Applications, SIAM, Philadelphia, 1994.

Nemirovski, A., and P. Gahinet, "The Projective Method for Solving Linear Matrix Inequalities," Proc. Amer. Contr. Conf., 1994, Baltimore, Maryland, pp. 840-844.

The optimization is performed by the C-MEX file pds.mex.

See Also defcx, dec2mat, decnbr, feasp, gevp

Purpose
Multi-model/multi-objective state-feedback synthesis

Syntax [gopt,h2opt $, \mathrm{K}, \mathrm{Pcl}, \mathrm{X}]=\operatorname{msfsyn}(\mathrm{P}, \mathrm{r}, \mathrm{obj}$, region,tol $)$

Description
Given an LTI plant P with state-space equations

$$
\left\{\begin{array}{l}
\dot{\mathrm{x}}=\mathrm{Ax}+\mathrm{B}_{1} \mathrm{w}+\mathrm{B}_{2} \mathrm{u} \\
\mathrm{z}_{\infty}=\mathrm{C}_{1} \mathrm{x}+\mathrm{D}_{11} \mathrm{w}+\mathrm{D}_{12} \mathrm{u} \\
\mathrm{z}_{2}=\mathrm{C}_{2} \mathrm{x}+\mathrm{D}_{22} \mathrm{u}
\end{array}\right.
$$

msfsyn computes a state-feedback control $u=K x$ that

- Maintains the RMS gain (H_{∞} norm) of the closed-loop transfer function T_{∞} from w to z_{∞} below some prescribed value $\gamma_{0}>0$
- Maintains the H_{2} norm of the closed-loop transfer function T_{2} from w to z_{2} below some prescribed value $v_{0}>0$
- Minimizes an H_{2} / H_{∞} trade-off criterion of the form

$$
\alpha\left\|\mathrm{T}_{\infty}\right\|_{\infty}^{2}+\beta\left\|\mathrm{T}_{2}\right\|_{2}^{2}
$$

- Places the closed-loop poles inside the LMI region specified by region (see lmireg for the specification of such regions). The default is the open left-half plane.

Set $r=\operatorname{size}(\mathrm{d} 22)$ and $\mathrm{obj}=\left[\gamma_{0}, v_{0}, \alpha, \beta\right]$ to specify the problem dimensions and the design parameters $\gamma_{0}, \nu_{0}, \alpha$, and β. You can perform pure pole placement by setting obj $=\left[\begin{array}{llll}0 & 0 & 0 & 0\end{array}\right]$. Note also that z_{∞} or z_{2} can be empty.

On output, gopt and h2opt are the guaranteed H_{∞} and H_{2} performances, K is the optimal state-feedback gain, Pcl the closed-loop transfer function from w to $\binom{z_{\infty}}{z_{2}}$, and X the corresponding Lyapunov matrix.

The function msfsyn is also applicable to multi-model problems where P is a polytopic model of the plant:

$$
\left\{\begin{array}{l}
\dot{\mathrm{x}}=\mathrm{A}(\mathrm{t}) \mathrm{x}+\mathrm{B}_{1}(\mathrm{t}) \mathrm{w}+\mathrm{B}_{2}(\mathrm{t}) \mathrm{u} \\
\mathrm{z}_{\infty}=\mathrm{C}_{1}(\mathrm{t}) \mathrm{x}+\mathrm{D}_{11}(\mathrm{t}) \mathrm{w}+\mathrm{D}_{12}(\mathrm{t}) \mathrm{u} \\
\mathrm{z}_{2}=\mathrm{C}_{2}(\mathrm{t}) \mathrm{x}+\mathrm{D}_{22}(\mathrm{t}) \mathrm{u}
\end{array}\right.
$$

with time-varying state-space matrices ranging in the polytope

$$
\left(\begin{array}{ccc}
\mathrm{A}(\mathrm{t}) & \mathrm{B}_{1}(\mathrm{t}) & \mathrm{B}_{2}(\mathrm{t}) \\
\mathrm{C}_{1}(\mathrm{t}) & \mathrm{D}_{11}(\mathrm{t}) & \mathrm{D}_{12}(\mathrm{t}) \\
\mathrm{C}_{2}(\mathrm{t}) & 0 & \mathrm{D}_{22}(\mathrm{t})
\end{array}\right) \in \mathrm{Co}\left\{\left(\begin{array}{ccc}
\mathrm{A}_{\mathrm{k}} & \mathrm{~B}_{\mathrm{k}} & \mathrm{~B}_{2 \mathrm{k}} \\
\mathrm{C}_{1 \mathrm{k}} & \mathrm{D}_{11 \mathrm{k}} & \mathrm{D}_{12 \mathrm{k}} \\
\mathrm{C}_{2 \mathrm{k}} & 0 & \mathrm{D}_{22 \mathrm{k}}
\end{array}\right): \mathrm{k}=1, \ldots, \mathrm{~K}\right\}
$$

In this context, msfsyn seeks a state-feedback gain that robustly enforces the specifications over the entire polytope of plants. Note that polytopic plants should be defined with psys and that the closed-loop system Pcl is itself polytopic in such problems. Affine parameter-dependent plants are also accepted and automatically converted to polytopic models.

Example

See "Design Example" on page 4-13.
See Also lmireg, psys, hinfmix

Purpose

Syntax
 [mu,D,G] = mubnd(M,delta,target)

See Also mustab, muperf

Purpose

Syntax

Description

Estimate the robust H_{∞} performance of uncertain dynamical systems

```
[grob,peakf] = muperf(P,delta,0,freqs)
[margin,peakf] = muperf(P,delta,g,freqs)
```

muperf estimates the robust H_{∞} performance (worst-case RMS gain) of the uncertain LTI system

where $\Delta(s)=\operatorname{diag}\left(\Delta_{1}(s), \ldots, \Delta_{n}(s)\right)$
is a linear time-invariant uncertainty quantified by norm bounds $\sigma_{\max }\left(\Delta_{i}(j \omega)\right)<\beta_{i}(\omega)$ or sector bounds $\Delta_{i} \in\{\mathrm{a}, \mathrm{b}\}$. The robust performance γ_{rob} is the smallest $\gamma>0$ such that

$$
\|y\|_{L_{2}}<\gamma\|u\|_{L_{2}}
$$

for all bounded input $u(t)$ and instance $\Delta(s)$ of the uncertainty. It is finite if and only if the interconnection is robustly stable.
muperf converts the robust performance estimation into a robust stability problem for some augmented Δ structure (see "Robust Performance" on page 3-21). The input arguments P and delta contain the SYSTEM matrix of $P(s)$ and the description of the LTI uncertainty $\Delta(s)$ (see ublock and udiag). To compute the robust H_{∞} performance grob for the prescribed uncertainty delta, call muperf with the syntax

```
[grob,peakf] = muperf(P,delta)
```

muperf returns grob $=$ Inf when the interconnection is not robustly stable.
Alternatively,

```
[margin,peakf] = muperf(P,delta,g)
```

estimates the robustness of a given H_{∞} performance g , that is, how much uncertainty $\Delta(s)$ can be tolerated before the RMS gain from u to y exceeds g. Provided that

$$
\sigma_{\max }\left(\Delta_{i}(j \omega)\right)<\operatorname{margin} \times \beta_{i}(\omega)
$$

in the norm-bounded case and

$$
\Delta_{\mathrm{i}} \in\left\{\frac{\mathrm{a}+\mathrm{b}}{2}-\frac{\mathrm{b}-\mathrm{a}}{2} \times \text { margin, } \frac{\mathrm{a}+\mathrm{b}}{2}+\frac{\mathrm{b}-\mathrm{a}}{2} \times \text { margin }\right\}
$$

in the sector-bounded case, the RMS gain is guaranteed to remain below g .
With both syntaxes, peakf is the frequency where the worst RMS performance or robustness margin is achieved. An optional vector of frequencies freqs to be used for the μ upper bound evaluation can be specified as fourth input argument.

See Also
 mustab, norminf, quadperf

Purpose

Syntax

Description

Estimate the robust stability margin of uncertain LTI systems
[margin,peak,fs,ds,gs] = mustab(sys,delta,freqs)
mustab computes an estimate margin of the robust stability margin for the interconnection

where $G(s)$ is a given LTI system and $\Delta=\operatorname{diag}\left(\Delta_{1}, \ldots, \Delta_{n}\right)$ is a linear time-invariant uncertainty quantified by norm bounds $\sigma_{\max }(\Delta i(j \omega))<\beta_{i}(\omega)$ or sector bounds $\Delta_{i} \in\{a, b\}$. In the norm-bounded case, the stability of this interconnection is guaranteed for all $\Delta(s)$ satisfying

$$
\sigma_{\max }\left(\Delta_{i}(j \omega)\right)<\operatorname{margin} \times \beta_{i}(\omega)
$$

See "Robust Stability Analysis" on page 3-19 for the interpretation of margin in the sector-bounded case.

The value margin is obtained by computing the mixed- μ upper bound $v_{\Delta}\left(G\left(j \omega_{i}\right)\right)$ over a grid of frequencies ω_{i}. The command

```
[margin,peak] = mustab(sys,delta)
```

returns the guaranteed stability margin margin and the frequency peakf where the margin is weakest. The uncertainty $\Delta(s)$ is specified by delta (see ublock and udiag). The optional third argument freqs is a user-supplied vector of frequencies where to evaluate $v_{\Delta}(G(j \omega))$.

To obtain the D, G scaling matrices at all tested frequencies, use the syntax

```
[margin,peak,fs,ds,gs] = mustab(sys,delta)
```

Here $f s$ is the vector of frequencies used to evaluate v_{Δ} and the D, G scalings at the frequency fs(i) are retrieved by

```
D = getdg(ds,i)
G = getdg(gs,i)
```


Caution
 margin may overestimate the robust stability margin when the frequency grid freqs is too coarse or when the μ upper bound is discontinuous due to real parameter uncertainty. See "Caution" on page 3-21 for more details.

Example

See "Example" on page 3-28.
See Also
mubnd, muperf, ublock, udiag

Purpose
 Attach an identifying tag to LMIs

Syntax tag = newlmi

Description

See Also
newlmi adds a new LMI to the LMI system currently described and returns an identifier tag for this LMI. This identifier can be used in lmiterm, showlmi, or dellmi commands to refer to the newly declared LMI. Tagging LMIs is optional and only meant to facilitate code development and readability.

Identifiers can be given mnemonic names to help keep track of the various LMIs. Their value is simply the ranking of each LMI in the system (in the order of declaration). They prove useful when some LMIs are deleted from the LMI system. In such cases, the identifiers are the safest means of referring to the remaining LMIs.
setlmis, lmivar, lmiterm, getlmis, lmiedit, dellmi

Purpose
Compute the random mean-squares (RMS) gain of continuous-time systems

Syntax
 [gain, peakf] = norminf(g,tol)

Description

Example

Reference

The peak gain of the transfer function

$$
G(s)=\frac{100}{s^{2}+0.01 s+100}
$$

is given by

```
norminf(ltisys('tf',100,[1 0.01 100]))
ans =
```

$1.0000 \mathrm{e}+03$
Boyd, S., V. Balakrishnan, and P. Kabamba, "A Bisection Method for Computing the H_{∞} Norm of a Transfer Matrix and Related Problems," Math. Contr. Sign. Syst., 2 (1989), pp. 207-219.

Bruisma, N.A., and M. Steinbuch, "A Fast Algorithm to Compute the H_{∞}-Norm of a Transfer Function Matrix," Syst. Contr. Letters, 14 (1990), pp. 287-293.

Robel, G., "On Computing the Infinity Norm," IEEE Trans. Aut. Contr., AC-34 (1989), pp. 882-884.

See Also dnorminf, muperf, quadperf

Purpose

Syntax

Description
Given a stable LTI system

$$
\mathrm{G}:\left\{\begin{array}{l}
\dot{\mathrm{x}}=\mathrm{Ax}+\mathrm{Bw} \\
\mathrm{y}=\mathrm{Cx}
\end{array}\right.
$$

driven by a white noise w with unit covariance, norm2 computes the H_{2} norm (LQG performance) of G defined by

$$
\begin{aligned}
\|G\|_{2}^{2} & =\lim _{T \rightarrow \infty} E\left\{\frac{1}{T} \int_{0}^{T} y^{T}(t) y(t) d t\right\} \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} G^{H}(j \omega) G(j \omega) d \omega
\end{aligned}
$$

where $G(s)=C(s I-A)^{-1} B$.
This norm is computed as

$$
\|\mathrm{G}\|_{2}=\sqrt{\operatorname{Trace}\left(\mathrm{CPC}^{\mathrm{T}}\right)}
$$

where P is the solution of the Lyapunov equation

$$
A P+P A^{T}+B B^{T}=0
$$

See Also
norminf

Purpose

Syntax

Description

Assess the robust stability of a polytopic or parameter-dependent system

```
[tau,Q0,Q1,...] = pdlstab(pds,options)
```

pdlstab uses parameter-dependent Lyapunov functions to establish the stability of uncertain state-space models over some parameter range or polytope of systems. Only sufficient conditions for the existence of such Lyapunov functions are available in general. Nevertheless, the resulting robust stability tests are always less conservative than quadratic stability tests when the parameters are either time-invariant or slowly varying.

For an affine parameter-dependent system

$$
\begin{aligned}
E(p) \dot{\mathrm{x}} & =A(p) x+B(p) u \\
y & =C(p) x+D(p) u
\end{aligned}
$$

with $p=\left(p_{1}, \ldots, p_{n}\right) \in \mathbf{R}^{n}$, pdlstab seeks a Lyapunov function of the form

$$
\mathrm{V}(x, p)=x^{T} Q(p)^{-1} x, \quad Q(p)=Q_{0}+p_{1} Q_{1}+\ldots p_{n} Q_{n}
$$

such that $d V(x, p) / d t<0$ along all admissible parameter trajectories. The system description pds is specified with psys and contains information about the range of values and rate of variation of each parameter p_{i}.

For a time-invariant polytopic system

$$
\begin{aligned}
E \dot{\mathrm{x}} & =A x+B u \\
y & =C x+D u
\end{aligned}
$$

with

$$
\left(\begin{array}{cc}
A+j E & B \tag{9-19}\\
C & D
\end{array}\right)=\sum_{i=1}^{n} \alpha_{i}\left(\begin{array}{cc}
A+j E_{i} & B_{i} \\
C_{i} & D_{i}
\end{array}\right), \quad \alpha_{i} \geq 0, \quad \sum_{i=1}^{n} \alpha_{i}=1,
$$

pdlstab seeks a Lyapunov function of the form

$$
\mathrm{V}(x, \alpha)=x^{T} Q(\alpha)^{-1} x, \quad Q(\alpha)=\alpha_{1} Q_{1}+\ldots+\alpha_{n} Q_{n}
$$

such that $d V(x, \alpha) / d t<0$ for all polytopic decompositions (9-19).

pdlstab

Several options and control parameters are accessible through the optional argument options:

- Setting options(1)=0 tests robust stability (default)
- When options(2)=0, pdlstab uses simplified sufficient conditions for faster running times. Set options (2)=1 to use the least conservative conditions

Remark

See Also

For affine parameter-dependent systems with time-invariant parameters, there is equivalence between the robust stability of

$$
\begin{equation*}
E(p) \dot{x}=A(p) x \tag{9-20}
\end{equation*}
$$

and that of the dual system

$$
\begin{equation*}
\mathrm{E}(\mathrm{p})^{\mathrm{T}} \dot{\mathrm{z}}=\mathrm{A}(\mathrm{p})^{\mathrm{T}} \mathrm{z} \tag{9-21}
\end{equation*}
$$

However, the second system may admit an affine parameter-dependent Lyapunov function while the first does not.

In such case, pdlstab automatically restarts and tests stability on the dual system (9-21) when it fails on (9-20).
quadstab, mustab
Purpose
Syntax

pdsimul(pds,'traj',tf,'ut', xi,options)

[t, x,y] = pdsimul(pds, pv,'traj',tf,'ut', xi,options)
Description
Example
See Also psys, pvec, gear
Purpose Perform the Popov robust stability test
Syntax

 [t,P,S,N] = popov(sys,delta,flag)
 Description
Example
See Also

Purpose

Inquire about polytopic or parameter-dependent systems created with psys

Syntax

```
psinfo(ps)
[type,k,ns,ni,no] = psinfo(ps)
pv = psinfo(ps,'par')
sk = psinfo(ps,'sys',k)
sys = psinfo(ps,'eval',p)
```


Description

psinfo is a multi-usage function for queries about a polytopic or parameter-dependent system ps created with psys. It performs the following operations depending on the calling sequence:

- psinfo(ps) displays the type of system (affine or polytopic); the number k of SYSTEM matrices involved in its definition; and the numbers of ns, ni, no of states, inputs, and outputs of the system. This information can be optionally stored in MATLAB variables by providing output arguments.
- pv = psinfo(ps,'par') returns the parameter vector description (for parameter-dependent systems only).
- sk = psinfo(ps,'sys',k) returns the k-th SYSTEM matrix involved in the definition of ps . The ranking k is relative to the list of systems syslist used in psys.
- sys = psinfo(ps, 'eval', p) instantiates the system for a given vector p of parameter values or polytopic coordinates.
For affine parameter-dependent systems defined by the SYSTEM matrices S_{0}, S_{1}, \ldots, S_{n}, the entries of p should be real parameter values p_{1}, \ldots, p_{n} and the result is the LTI system of SYSTEM matrix

$$
S(p)=S_{0}+p_{1} S_{1}+\ldots+p_{n} S_{n}
$$

For polytopic systems with SYSTEM matrix ranging in

$$
\operatorname{Co}\left\{S_{1}, \ldots, S_{n}\right\}
$$

the entries of p should be polytopic coordinates p_{1}, \ldots, p_{n} satisfying p_{j} Š 0 and the result is the interpolated LTI system of SYSTEM matrix

$$
\mathrm{S}=\frac{\mathrm{p}_{1} \mathrm{~S}_{1}+\ldots+\mathrm{p}_{\mathrm{n}} \mathrm{~S}_{\mathrm{n}}}{\mathrm{p}_{1}+\ldots+\mathrm{p}_{\mathrm{n}}}
$$

See Also psys, ltisys

Purpose

Syntax

Description

Specify polytopic or parameter-dependent linear systems
pols = psys(syslist)
affs = psys(pv,syslist)
psys specifies state-space models where the state-space matrices can be uncertain, time-varying, or parameter-dependent.
Two types of uncertain state-space models can be manipulated in the LMI Control Toolbox:

- Polytopic systems

$$
\begin{aligned}
E(t) \dot{\mathrm{x}} & =A(t) x+B(t) u \\
y & =C(t) x+D(t) u
\end{aligned}
$$

whose SYSTEM matrix takes values in a fixed polytope:

$$
\underbrace{\left[\begin{array}{cc}
A(t)+j E(t) & B(t) \\
C(t) & D(t)
\end{array}\right]}_{S(t)} \in \operatorname{Co}\{\begin{array}{cc}
{\left[\begin{array}{cc}
A_{1}+j E_{1} & B_{1} \\
C_{1} & D_{1}
\end{array}\right]}
\end{array}, \ldots, \underbrace{\left.\left[\begin{array}{cc}
A_{k}+j E_{k} & B_{k} \\
C_{k} & D_{k}
\end{array}\right]\right\}}_{S_{k}}
$$

where S_{1}, \ldots, S_{k} are given "vertex" systems and

$$
\operatorname{Co}\left\{S_{1}, \ldots, S_{k}\right\}=\left\{\sum_{\mathrm{i}=1}^{\mathrm{k}} \alpha_{\mathrm{i}} \mathrm{~S}_{\mathrm{i}}: \alpha_{\mathrm{i}} \geq 0, \sum_{\mathrm{i}=1}^{\mathrm{k}} \alpha_{\mathrm{i}}=1\right\}
$$

denotes the convex hull of S_{1}, \ldots, S_{k} (polytope of matrices with vertices S_{1}, \ldots, S_{k})

- Affine parameter-dependent systems
$E(p) \dot{\mathrm{x}}=A(p) x+B(p) u$

$$
y=C(p) x+D(p) u
$$

where $A(\cdot) ; B(\cdot), \ldots, E(\cdot)$ are fixed affine functions of some vector $p=\left(p_{1}, \ldots, p_{n}\right)$ of real parameters, i.e.,

$$
\underbrace{\left[\begin{array}{cc}
A(p)+j E(p) & B(p) \\
C(p) & D(p)
\end{array}\right]}_{S(p)}=
$$

$$
\underbrace{\left[\begin{array}{cc}
A_{0}+j E_{0} & B_{0} \\
C_{0} & D_{0}
\end{array}\right]}_{S_{0}}+\underbrace{\left[\begin{array}{cc}
A_{1}+j E_{1} & B_{1} \\
C_{1} & D_{1}
\end{array}\right]}_{S_{1}}+\ldots+p_{n} \underbrace{\left[\begin{array}{cc}
A_{n}+j E_{n} & B_{n} \\
C_{n} & D_{n}
\end{array}\right]}_{S_{n}}
$$

where $S_{0}, S_{1}, \ldots, S_{n}$ are given SYSTEM matrices. The parameters p_{i} can be time-varying or constant but uncertain.
Both types of models are specified with the function psys. The argument syslist lists the SYSTEM matrices S_{i} characterizing the polytopic value set or parameter dependence. In addition, the description $p v$ of the parameter vector (range of values and rate of variation) is required for affine parameterdependent models (see pvec for details). Thus, a polytopic model with vertex systems S_{1}, \ldots, S_{4} is created by

```
pols = psys([s1,s2,s3,s4])
```

while an affine parameter-dependent model with 4 real parameters is defined by

$$
\operatorname{affs}=\operatorname{psys}(p v,[s 0, s 1, s 2, s 3, s 4])
$$

The output is a structured matrix storing all the relevant information.
To specify the autonomous parameter-dependent system

$$
\dot{\mathrm{x}}=A(p) x, \quad A(p)=A_{0}+p_{1} A_{1}+p_{2} A_{2}
$$

type

```
sO = ltisys(a0)
s1 = ltisys(a1,0)
s2 = ltisys(a2,0)
ps = psys(pv,[s0 s1 s2])
```

Do not forget the 0 in the second and third commands. This 0 marks the independence of the E matrix on p_{1}, p_{2}. Typing

```
s0 = ltisys(a0)
s1 = ltisys(a1)
s2 = ltisys(a2)
ps = psys(pv,[s0 s1 s2])
```

instead would specify the system

$$
E(p) \dot{\mathrm{x}}=A(p) x, \quad E(p)=\left(1+p_{1}+p_{2}\right) I, \quad A(p)=A_{0}+p_{1} A_{1}+p_{2} A_{2}
$$

Example
 See "Example 2.1" on page 2-21.

See Also psinfo, pvec, aff2pol, ltisys

Purpose

Syntax

Description

Example

Specify the range and rate of variation of uncertain or time-varying parameters

```
pv = pvec('box',range,rates)
pv = pvec('pol',vertices)
```

pvec is used in conjunction with psys to specify parameter-dependent systems. Such systems are parametrized by a vector $p=\left(p_{1}, \ldots, p_{n}\right)$ of uncertain or time-varying real parameters p_{i}. The function pvec defines the range of values and the rates of variation of these parameters.
The type 'box' corresponds to independent parameters ranging in intervals

$$
\underline{\mathrm{p}}_{\mathrm{j}} \leq \mathrm{p}_{\mathrm{j}} \leq \overline{\mathrm{p}}_{\mathrm{j}}
$$

The parameter vector p then takes values in a hyperrectangle of \mathbf{R}^{n} called the parameter box. The second argument range is an n-by- 2 matrix that stacks up the extremal values $\underline{p}_{\mathrm{j}}$ and $\overline{\mathrm{p}}_{\mathrm{j}}$ of each p_{j}. If the third argument rates is omitted, all parameters are assumed time-invariant. Otherwise, rates is also an n-by- 2 matrix and its j-th row specifies lower and upper bounds $\underline{v}_{\mathrm{j}}$ and \bar{v}_{j} on $\frac{\mathrm{dp}_{\mathrm{j}}}{\mathrm{dt}}$:

$$
\underline{v}_{\mathrm{j}} \leq \frac{\mathrm{d} p_{\mathrm{j}}}{\mathrm{dt}} \leq \overline{\mathrm{v}}_{\mathrm{j}}
$$

Set $\underline{v}_{\mathrm{j}}=$ Inf and $\bar{v}_{\mathrm{j}}=$ Inf if $p_{j}(t)$ can vary arbitrarily fast or discontinuously.
The type 'pol' corresponds to parameter vectors p ranging in a polytope of the parameter space \mathbf{R}^{n}. This polytope is defined by a set of vertices V_{1}, \ldots, V_{n} corresponding to "extremal" values of the vector p. Such parameter vectors are declared by the command
pv = pvec('pol',[v1,v2, . . ., vn])
where the second argument is the concatenation of the vectors $\mathrm{v} 1, \ldots, \mathrm{vn}$.
The output argument $p v$ is a structured matrix storing the parameter vector description. Use pvinfo to read the contents of pv.

Consider a problem with two time-invariant parameters

$$
p_{1} \in[-1,2], \quad p_{2} \in[20,50]
$$

The corresponding parameter vector $p=\left(p_{1}, p_{2}\right)$ is specified by

$$
\text { pv = pvec('box',[}-1 \text { 2;20 50]) }
$$

Alternatively, this vector can be regarded as taking values in the rectangle drawn in Figure 9.2. The four corners of this rectangle are the four vectors

$$
\mathrm{v}_{1}=\binom{-1}{20}, \quad \mathrm{v}_{2}=\binom{-1}{50}, \quad \mathrm{v}_{3}=\binom{2}{20}, \quad \mathrm{v}_{4}=\binom{2}{50}
$$

Hence, you could also specify p by

$$
\mathrm{pv}=\mathrm{pvec}(' \mathrm{pol} \text { ', [v1, v2, v3, v4]) }
$$

Figure 9-2: Parameter box

See Also

pvinfo, psys

Purpose

Describe a parameter vector specified with pvec

Syntax

```
[typ,k,nv] = pvinfo(pv)
[pmin,pmax,dpmin,dpmax] = pvinfo(pv,'par',j)
vj = pvinfo(pv,'par',j)
p = pvinfo(pv,'eval',c)
```


Description

pvec retrieves information about a vector $p=\left(p_{1}, \ldots, p_{n}\right)$ of real parameters declared with pvec and stored in $p v$. The command $p v i n f o(p v)$ displays the type of parameter vector ('box' or 'pol'), the number n of scalar parameters, and for the type 'pol', the number of vertices used to specify the parameter range.

For the type 'box':

```
[pmin,pmax,dpmin,dpmax] = pvinfo(pv,'par',j)
```

returns the bounds on the value and rate of variations of the j-th real parameter p_{j}. Specifically,

$$
\operatorname{pmin} \leq p_{j}(t) \leq \operatorname{pmax}, \operatorname{dpmin} \leq \frac{d p}{d t} \leq \operatorname{dpmax}
$$

For the type 'pol':
pvinfo(pv,'par', j)
returns the j -th vertex of the polytope of \mathbf{R}^{n} in which p ranges, while

```
pvinfo(pv,'eval',c)
```

returns the value of the parameter vector p given its barycentric coordinates c with respect to the polytope vertices $\left(V_{1}, \ldots, V_{k}\right)$. The vector c must be of length k and have nonnegative entries. The corresponding value of p is then given by

$$
\mathrm{p}=\frac{\sum_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{c}_{\mathrm{i}} \mathrm{~V}_{\mathrm{i}}}{\sum_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{c}_{\mathrm{i}}}
$$

See Also pvec, psys

quadperf

Purpose

Syntax
Description

Compute the quadratic H_{∞} performance of a polytopic or parameter-dependent system

```
[perf,P] = quadperf(ps,g,options)
```

The RMS gain of the time-varying system

$$
\begin{equation*}
\mathrm{E}(\mathrm{t}) \dot{\mathrm{x}}=\mathrm{A}(\mathrm{t}) \mathrm{x}+\mathrm{B}(\mathrm{t}) \mathrm{u}, \quad \mathrm{y}=\mathrm{C}(\mathrm{t}) \mathrm{x}+\mathrm{D}(\mathrm{t}) \mathrm{u} \tag{9-22}
\end{equation*}
$$

is the smallest $\gamma>0$ such that

$$
\begin{equation*}
\|\mathbf{y}\|_{\mathrm{L}_{2}} \leq \gamma\|\mathbf{u}\|_{\mathrm{L}_{2}} \tag{9-23}
\end{equation*}
$$

for all input $u(t)$ with bounded energy. A sufficient condition for (9-23) is the existence of a quadratic Lyapunov function

$$
\mathrm{V}(x)=x^{T} P x, \quad P>0
$$

such that

$$
\forall \mathrm{u} \in \mathrm{~L}_{2}, \quad \frac{\mathrm{dV}}{\mathrm{dt}}+\mathrm{y}^{\mathrm{T}} \mathrm{y}-\gamma^{2} \mathrm{u}^{\mathrm{T}} \mathrm{u}<0
$$

Minimizing γ over such quadratic Lyapunov functions yields the quadratic H_{∞} performance, an upper bound on the true RMS gain.

The command

```
[perf,P] = quadperf(ps)
```

computes the quadratic H_{∞} performance perf when (9-22) is a polytopic or affine parameter-dependent system ps (see psys). The Lyapunov matrix P yielding the performance perf is returned in P.

The optional input options gives access to the following task and control parameters:

- If options(1)=1, perf is the largest portion of the parameter box where the quadratic RMS gain remains smaller than the positive value g (for affine parameter-dependent systems only). The default value is 0
- If options(2)=1, quadperf uses the least conservative quadratic performance test. The default is options (2) $=0$ (fast mode)
- options (3) is a user-specified upper bound on the condition number of P (the default is 10^{9}).

Example

See "Example 3.4" on page 3-10.
See Also
muperf, quadstab, psys

quadstab

Purpose
Syntax $\quad[$ tau,$P]=$ quadstab $(p s, o p t i o n s)$
Description
For affine parameter-dependent systems

Quadratic stability of polytopic or affine parameter-dependent systems

$$
E(p) \dot{\mathrm{x}}=A(p) x, \quad p(t)=\left(p_{1}(t), \ldots, p_{n}(t)\right)
$$

or polytopic systems

$$
E(t) \dot{\mathrm{x}}=A(t) x, \quad(A, E) \in \operatorname{Co}\left\{\left(A_{1}, E_{1}\right), \ldots,\left(A_{n}, E_{n}\right)\right\},
$$

quadstab seeks a fixed Lyapunov function $\mathrm{V}(x)=x^{T} P x$ with $P>0$ that establishes quadratic stability (see "Quadratic Lyapunov Functions" on page 3-3 for details). The affine or polytopic model is described by ps (see psys).

The task performed by quadstab is selected by options(1):

- if options (1) =0 (default), quadstab assesses quadratic stability by solving the LMI problem
Minimize τ over $Q=Q^{T}$ such that

$$
\begin{gathered}
A^{T} Q E+E Q A^{T}<\tau I \text { for all admissible values of }(A, E) \\
Q>I
\end{gathered}
$$

The global minimum of this problem is returned in tau and the system is quadratically stable if tau < 0

- if options (1)=1, quadstab computes the largest portion of the specified parameter range where quadratic stability holds (only available for affine models). Specifically, if each parameter p_{i} varies in the interval

$$
p_{i} \in\left[p_{i 0}-\delta_{i}, p_{i 0}+\delta_{i}\right],
$$

quadstab computes the largest $\theta>0$ such that quadratic stability holds over the parameter box

$$
p_{i} \in\left[p_{i 0}-\theta \delta_{i}, p_{i 0}+\theta \delta_{i}\right]
$$

This "quadratic stability margin" is returned in tau and ps is quadratically stable if tau S 1.
Given the solution $Q_{\text {opt }}$ of the LMI optimization, the Lyapunov matrix P is given by $P=\mathrm{Q}_{\mathrm{opt}}^{-1}$. This matrix is returned in P.

Other control parameters can be accessed through options(2) and options(3):

- if options(2)=0 (default), quadstab runs in fast mode, using the least expensive sufficient conditions. Set options (2)=1 to use the least conservative conditions
- options (3) is a bound on the condition number of the Lyapunov matrix P. The default is 10^{9}.

Example

See Also
See "Example 3.1" on page 3-7 and "Example 3.2" on page 3-8.
pdlstab, mustab, decay, quadperf, psys

Purpose Solve continuous-time Riccati equations (CARE)

Syntax

Description

Reference

$$
\begin{aligned}
& X=\operatorname{ricpen}(H, L) \\
& {[X 1, X 2]=\operatorname{ricpen}(H, L)}
\end{aligned}
$$

This function computes the stabilizing solution X of the Riccati equation

$$
A^{T} X E+E^{T} X A+E^{T} X F X E-\left(E^{T} X B+S\right) R^{-1}\left(B^{T} X E+S^{T}\right)+Q=0
$$

where E is an invertible matrix. The solution is computed by unitary deflation of the associated Hamiltonian pencil

$$
H-\lambda L=\left[\begin{array}{ccc}
\mathrm{A} & \mathrm{~F} & \mathrm{~B} \\
-\mathrm{Q} & -\mathrm{A}^{\mathrm{T}} & -\mathrm{S} \\
\mathrm{~S}^{\mathrm{T}} & \mathrm{~B}^{\mathrm{T}} & \mathrm{R}
\end{array}\right]-\lambda\left[\begin{array}{ccc}
\mathrm{E} & 0 & 0 \\
0 & \mathrm{E}^{\mathrm{T}} & 0 \\
0 & 0 & 0
\end{array}\right]
$$

The matrices H and L are specified as input arguments. For solvability, the pencil $H-\lambda L$ must have no finite generalized eigenvalue on the imaginary axis. such that $\left[\begin{array}{l}\mathrm{X}_{1} \\ \mathrm{X}_{2}\end{array}\right]$ has or thonormal columns, and $X=X_{2} \mathrm{X}_{1}^{-1}$ is the stabilizing solution of (9-24).

If X_{1} is invertible, the solution X is returned directly by the syntax X $=$ ricpen (H, L).
ricpen is adapted from care and implements the generalized Schur method for solving CAREs.

Laub, A. J., "A Schur Method for Solving Algebraic Riccati Equations," IEEE

When called with two output arguments, ricpen returns two matrices X_{1}, X_{2} Trans. Aut. Contr., AC-24 (1979), pp. 913-921.
Arnold, W.F., and A.J. Laub, "Generalized Eigenproblem Algorithms and Software for Algebraic Riccati Equations," Proc. IEEE, 72 (1984), pp. 17461754.

See Also

care, dricpen

Purpose
Parallel interconnection of linear systems

Syntax

sys $=\operatorname{sadd}(g 1, g 2, \ldots)$
Description
sadd forms the parallel interconnection

of the linear systems G_{1}, \ldots, G_{n}. The arguments $\mathrm{g} 1, \mathrm{~g} 2, \ldots$ are either SYSTEM matrices (dynamical systems) or constant matrices (static gains). In addition, one (and at most one) of these systems can be polytopic or parameterdependent, in which case the resulting system sys is of the same nature.

In terms of transfer functions, sadd performs the sum

$$
G(s)=G_{1}(s)+G_{2}(s)+\ldots+G_{n}(s)
$$

See Also
smult, sdiag, sloop, ltisys

Purpose
 Numerically balance the state-space realization of a linear system

Syntax

Description

Example

```
[a,b,c] = sbalanc(a,b,c,condnbr)
sys = sbalanc(sys,condnbr)
```

sbalanc computes a diagonal invertible matrix T that balances the state-space realization (A, B, C) by reducing the magnitude of the off-diagonal entries of A and by scaling the norms of B and C. The resulting realization is of the form

$$
\left(T^{-1} A^{T}, T^{-1} B, C T\right)
$$

The optional argument condnbr specifies an upper bound on the condition number of T. The default value is 10^{8}.

Computing a realization of

$$
\mathrm{W}(\mathrm{~s})=\frac{\mathrm{s}^{2}+\mathrm{s}+1}{(\mathrm{~s}+500)^{2}}
$$

with the function tf2ss yields

```
[a,b,c,d]=tf2ss([1 1 1],[1 1000 500^2])
a =
    -1000 -250000
    1 0
b =
    1
    0
c =
    -999 -249999
d =
    1
```

To reduce the numerical range of this data and improve numerical stability of subsequent computations, you can balance this realization by

```
[a,b,c]=sbalanc(a,b,c)
a =
    -1000.00 -3906.25
    64.00 0
```

```
b =
                            64.00
                0
c =
            -15.61
                -61.03
```

See Also ltisys

Purpose

Syntax

Description

Specify general control structures or system interconnections

```
[P,r] = sconnect(inputs,outputs,Kin,G1in,g1,G2in,g2,...)
```

sconnect is useful in loop-shaping problems to turn general control structures into the standard linear-fractional interconnection used in H_{∞} synthesis. In this context, sconnect returns:

- The SYSTEM matrix P of the standard H_{∞} plant $P(s)$
- The vector $\mathrm{r}=[\mathrm{p} 2 \mathrm{~m} 2$] where p 2 and m 2 are the number of input and outputs of the controller, respectively.

More generally, sconnect is useful to specify complex interconnections of LTI systems (see Example 1 below).

General control loops or system interconnections are described in terms of signal flows. Specifically, you must specify

- The exogenous inputs, i.e., what signals enter the loop or interconnection
- The ouput signals, i.e., the signals generated by the loop or interconnection
- How the inputs of each dynamical system relate to the exogenous inputs and to the outputs of other systems.

The outputs of a system of name G are collectively denoted by G. To refer to particular outputs, e.g., the second and third, use the syntax $G(2: 3)$.

The arguments of sconnect are as follows:

- The first argument inputs is a string listing the exogenous inputs. For instance, inputs='r(2), d' specifies two inputs, a vector r of size 2 and a scalar input d
- The second argument outputs is a string listing the outputs generated by the control loop. Outputs are defined as combinations of the exogenous inputs and the outputs of the dynamical systems. For instance, outputs='e=r-s; $\mathrm{S}+\mathrm{d}^{\prime}$ specifies two outputs $e=r-y$ and $y+d$ where y is the output of the system of name S .
- The third argument Kin names the controller and specifies its inputs. For instance, $\mathrm{Kin}=$ ' K : e^{\prime} inserts a controller of name K and input e. If no name is specified as in Kin=' e ', the default name K is given to the controller.
- The remaining arguments come in pairs and specify, for each known LTI system in the loop, its input list Gkin and its SYSTEM matrix gk. The input list is a string of the form
system name : input1 ; input2 ; ... ; input n
For instance, G1in='S: K(2);d' inserts a system called S whose inputs consist of the second output of the controller K and of the input signal d.
Note that the names given to the various systems are immaterial provided that they are used consistently throughout the definitions.

Remark

One of the dynamical systems can be polytopic or affine parameter-dependent. In this case, sconnect always returns a polytopic model of the interconnection.

Example 1

This simple example illustrates the use of sconnect to compute interconnections of systems without controller. The SYSTEM matrix of this series interconnection is returned by

```
sys1 = ltisys('tf',1,[1 1])
sys2 = ltisys('tf',[1 0],[1 2])
S = sconnect('r','S2',[],'S1:r',sys1,'S2:S1',sys2)
```

Note that inputK is set to [] to mark the absence of controller. The same result would be obtained with

$$
S=\operatorname{smult}(\text { sys } 1, \text { sys2) }
$$

Example 2

The standard plant associated with this simple tracking loop is given by

$$
\begin{aligned}
& \mathrm{g}=\text { ltisys('tf', } 1,\left[\begin{array}{ll}
1 & 1
\end{array}\right] \\
& \mathrm{P}=\operatorname{sconnect('r^{\prime },'y=G'^{\prime },'C:r-y','G:C',g)}
\end{aligned}
$$

Example 3

If the SYSTEM matrices of the system G and filters $W_{1}, W_{2}, W_{3}, W_{d}, W_{n}$ are stored in the variables g, w1, w2, w3, wd, wn, respectively, the corresponding standard plant $P(s)$ is formed by

```
inputs = 'r;n;d'
outputs = 'W1;W2;W3'
Kin = 'K: e=r-y-Wn'
W3in = 'W3: y=G+Wd'
```

$$
\begin{array}{r}
{[P, r]=\text { sconnect(inputs,outputs,Kin, 'G:K',g,'W1:e',w1, } . .} \\
\text { 'W2:K',w2,W3in,w3, 'Wd:d',wd,'Wn:n',wn) }
\end{array}
$$

See Also ltisys, slft, ssub, sadd, smult

Purpose

Syntax dsys = sderiv(sys, chan, pd)

Description

Example

is formed by

```
w1 = ltisys('tf',1,[1 0])
w2 = 100
paug = smult(p,sdiag(w1,w2,1))
paug = sderiv(paug,3,[0.01 1])
```

This last command multiplies the third output of P by the filter w_{3}.
See Also ltisys, magshape

Purpose Append (concatenate) linear systems

Syntax

Description
$g=\operatorname{sdiag}(g 1, g 2, \ldots)$
sdiag returns the system obtained by stacking up the inputs and outputs of the systems $\mathrm{g} 1, \mathrm{~g} 2, \ldots$ as in the diagram.

If $G_{1}(s), G_{2}(s), \ldots$ are the transfer functions of $\mathrm{g} 1, \mathrm{~g} 2, \ldots$, the transfer function of g is

$$
G(s)=\left(\begin{array}{ccc}
\mathrm{G}_{1}(\mathrm{~s}) & 0 & 0 \\
0 & \mathrm{G}_{2}(\mathrm{~s}) & 0 \\
0 & 0 & \ddots
\end{array}\right)
$$

The function sdiag takes up to 10 input arguments. One (and at most one) of the systems $\mathrm{g} 1, \mathrm{~g} 2, \ldots$ can be polytopic or parameter-dependent, in which case g is of the same nature.

Example

with weighting filters

$$
w_{1}(s)=\frac{1}{\mathrm{~s}}, \quad w_{2}(s)=10, \quad w_{3}(s)=\frac{100 \mathrm{~s}}{\mathrm{~s}+100}
$$

is created by the commands

```
w1 = ltisys('tf',1,[1 0])
w3 = ltisys('tf',[100 0],[1 100])
paug = smult(p,sdiag(w1,10,w3))
```

See Also ltisys, ssub, sadd, smult, psys

Purpose Initialize the description of an LMI system

Syntax
 setlmis(lmiO)

Description

See Also

Before starting the description of a new LMI system with lmivar and lmiterm, type
setlmis([])
to initialize its internal representation.
To add on to an existing LMI system, use the syntax
setlmis(lmio)
where lmiO is the internal representation of this LMI system. Subsequent lmivar and lmiterm commands will then add new variables and terms to the initial LMI system lmio.
getlmis, lmivar, lmiterm, newlmi

Purpose

Syntax
newsys = setmvar(lmisys, $X, X v a l)$

Description

Example

 variable system is returned in newsys. matrix variables. complete redefinition of the set of LMI constraints.Consider the system

Instantiate a matrix variable and evaluate all LMI terms involving this matrix
setmvar sets the matrix variable X with identifier X to the value X val. All terms involving X are evaluated, the constant terms are updated accordingly, and X is removed from the list of matrix variables. A description of the resulting LMI

The integer X is the identifier returned by lmivar when X is declared. Instantiating X with setmvar does not alter the identifiers of the remaining

The function setmvar is useful to freeze certain matrix variables and optimize with respect to the remaining ones. It saves time by avoiding partial or

$$
\dot{\mathrm{x}}=A x+B u
$$

and the problem of finding a stabilizing state-feedback law $u=K x$ where K is an unknown matrix.

By the Lyapunov Theorem, this is equivalent to finding $P>0$ and K such that

$$
(A+B K) P+P(A+B K)^{T}+I<0 .
$$

With the change of variable $Y:=K P$, this condition reduces to the LMI

$$
A P+P A^{T}+B Y+Y^{T} B^{T}+I<0 .
$$

This LMI is entered by the commands

```
n = size(A,1) % number of states
ncon = size(B,2) % number of inputs
setlmis([])
P = lmivar(1,[n 1]) % P full symmetric
Y = lmivar(2,[ncon n]) % Y rectangular
lmiterm([ 1 1 1 1 1 P],A,1,'s') % AP+PA'
```

```
lmiterm([[1 1 1 1 Y Y],B,1,'s') % BY+Y'B'
lmiterm([[1 1 1 1 0],1) % I
lmis = getlmis
```

To find out whether this problem has a solution K for the particular Lyapunov $\operatorname{matrix} P=I$, set P to I by typing

```
news = setmvar(lmis,P,1)
```

The resulting LMI system news has only one variable $Y=K$. Its feasibility is assessed by calling feasp:

```
[tmin,xfeas] = feasp(news)
Y = dec2mat(news,xfeas,Y)
```

The computed Y is feasible whenever tmin <0.
See Also evallmi, delmvar
Purpose
Syntax

 [lhs,rhs] = showlmi(evalsys,n)
 Description
Example See the description of evallmi.
See Also evallmi, setmvar

Purpose
Syntax

Description

See Also

Return the number of states, inputs, and outputs of an LTI system

```
sinfo(sys)
[ns,ni,no] = sinfo(sys)
```

For a linear system

$$
\begin{aligned}
\mathrm{E} \dot{\mathrm{x}} & =A x+B u \\
y & =C x+D u
\end{aligned}
$$

specified in the SYSTEM matrix sys, sinfo returns the order ns of the system (number of states) and the numbers ni and no of its inputs and outputs, respectively. Note that ns, ni, and no are the lengths of the vectors x, u, y, respectively.

Without output arguments, sinfo displays this information on the screen and also indicates whether the system is in descriptor form $(E ; I)$ or not.
ltisys, ltiss, psinfo

Purpose

Syntax $\quad \mathrm{h}=\operatorname{sinv}(\mathrm{g})$
Description

See Also
ltisys, sadd, smult, sdiag

Purpose

Syntax
Description

Form the linear-fractional interconnection of two time-invariant systems (Redheffer's star product)
sys = slft(sys1,sys2,udim,ydim)
slft forms the linear-fractional feedback interconnection

of the two systems sys1 and sys2 and returns a realization sys of the closed-loop transfer function from $\binom{\mathrm{w}_{1}}{\mathrm{w}_{2}}$ to $\binom{\mathrm{z}_{1}}{\mathrm{z}_{2}}$. The optional arguments udim and ydim specify the lengths of the vectors u and y. Note that u enters sys1 while y is an output of this system. When udim and ydim are omitted, slft forms one of the two interconnections:

or

depending on which system has the larger number of inputs/outputs. An error is issued if neither of these interconnections can be performed.
slft also performs interconnections of polytopic or affine parameter-dependent systems. An error is issued if the result is neither polytopic nor affine parameter-dependent.

Example

Consider the interconnection

where $\Delta(s), P(s), K(s)$ are LTI systems. A realization of the closed-loop transfer function from w to z is obtained as
clsys = slft(delta, slft(p,k))
or equivalently as
clsys = slft(slft(delta,p),k)

See Also

ltisys, sloop, sconnect

Purpose
 Form the feedback interconnection of two systems

Syntax sys $=$ sloop(g1,g2,sgn)

Description sloop forms the interconnection

The output sys is a realization of the closed-loop transfer function from r to y. The third argument sgn specifies either negative feedback ($\operatorname{sgn}=1$) or positive feedback ($\operatorname{sgn}=+1$). The default value is 1 .

In terms of the transfer functions $G_{1}(s)$ and $G_{2}(s)$, sys corresponds to the transfer function $\left(I-\varepsilon G_{1} G_{2}\right)^{-1} G_{1}$ where $\varepsilon=$ sgn.

Example
 The closed-loop transfer function from r to y in

is obtained by

```
sys = sloop( ltisys('tf',1,[1 1]) , ltisys('tf',1,[1 0]))
[num,den] = ltitf(sys)
num =
```

```
    0 1.00 0.00
den =
    1.00 1.00 1.00
```

See Also ltisys, slft, sconnect

Purpose
 Series interconnection of linear systems

Syntax
 sys = smult(g1,g2,...)

Description

Example
smult forms the series interconnection

The arguments g1, g2, \ldots are SYSTEM matrices containing the state-space data for the systems G_{1}, \ldots, G_{n}. Constant matrices are also allowed as a representation of static gains. In addition, one (and at most one) of the input arguments can be a polytopic or affine parameter-dependent model, in which case the output sys is of the same nature.

In terms of transfer functions, this interconnection corresponds to the product

$$
G(s)=G_{n}(s) \times \ldots \times G_{1}(s)
$$

Note the reverse order of the terms.
Consider the interconnection

where $W_{i}(s), W_{0}(s)$ are given LTI filters and G is the affine parameter-dependent system

$$
\begin{aligned}
\dot{\mathrm{x}} & =\theta_{1} x+u \\
y & =x-\theta_{2} u
\end{aligned}
$$

parametrized by θ_{1}, θ_{2}. The parameter-dependent system defined by this interconnection is returned by

$$
\text { sys }=\text { smult }(w i, g, w 0)
$$

While the SYSTEM matrices wi and wO are created with ltisys, the parameter-dependent system g should be specified with psys.

See Also

sadd, sdiag, sloop, slft, ltisys

Purpose

Plot the various frequency and time responses of LTI systems

Syntax	splot(sys, type, xrange)
splot(sys, T, type, xrange)	

Description

The first syntax is for continuous-time systems

$$
\begin{array}{r}
E \dot{\mathrm{x}}=A x+B u \\
y=C x+D u
\end{array}
$$

The first argument sys is the SYSTEM matrix representation of a system. The optional argument xrange is a vector of frequencies or times used to control the x-axis and the number of points in the plot. Finally, the string type consists of the first two characters of the diagram to be plotted. Available choices include:

Frequency Response

type	plot
'bo'	Bode plot
'sv'	Singular value plot
'ny'	Nyquist plot
'li'	lin-log Nyquist plot
'ni'	Black/Nichols chart

Time Response

type	plot
'st'	Step response
'im'	Impulse response
'sq'	Response to a square signal
'si'	Response to a sinusoidal signal

The syntax splot(sys, T, type, xrange) is used for discrete-time systems, in which case T is the sampling period in seconds.

Remark

The Control System Toolbox is needed to run splot.
Example
Consider the third-order SISO system with transfer function

$$
\mathrm{G}(\mathrm{~s})=\frac{1}{\mathrm{~s}\left(\mathrm{~s}^{2}+0.001 \mathrm{~s}+1\right)}
$$

To plot the Nyquist diagram of the frequency response $G(j \omega)$, type

```
g = ltisys('tf',1,[1 0.001 1 0])
splot(g,'ny')
```

The resulting plot appears in Figure 9-3. Due to the integrator and poor damping of the natural frequency at $1 \mathrm{rd} / \mathrm{s}$, this plot is not very informative. In such cases, the lin-log Nyquist plot is more appropriate. Given the gain/phase decomposition

$$
G(j \omega)=\gamma(\omega) \mathrm{e}^{j \phi(\omega)}
$$

of the frequency response, the lin-log Nyquist plot is the curve described by

$$
x=\rho(\omega) \cos \varphi(\omega), \quad y=\rho(\omega) \sin \varphi(\omega)
$$

where

$$
p(\omega)= \begin{cases}\gamma \omega & \text { if } \gamma \omega \geq 1 \\ 1+\log _{10} \gamma \omega & \text { if } \gamma \omega>1\end{cases}
$$

This plot is drawn by the command

```
splot(g,'li')
```

and appears in Figure 9-4. The resulting aspect ratio is more satisfactory thanks to the logarithmic scale for gains larger than one. A more complete contour is drawn in Figure 9-5 by

```
splot(g,'li',logspace(-3,2))
```


Figure 9-3: splot(g,'ny')

Figure 9-4: splot(g,'li')

Figure 9-5: splot(g,'li',logspace(-3,2))

See Also
ltisys, bode, nyquist, sigma, step, impulse

Purpose
 Return the poles of an LTI system

Syntax
 poles $=$ spol(sys)

Description	The function spol computes the poles of the LTI system of SYSTEM matrix sys. If (A, B, C, D, E) denotes the state-space realization of this system, the poles are the generalized eigenvalues of the pencil (A, E) in general, and the eigenvalues of A when $E=I$.

See Also ltisys, ltiss

Purpose
 Frequency response of a continuous-time system

Syntax
 resp $=$ sresp(sys,f)

Description
Given a continuous-time system $G(s)$ of realization (A, B, C, D, E), sresp computes its frequency response

$$
G(j \omega)=D+C(j \omega E-A)^{-1} B
$$

at the frequency $\omega=\mathrm{f}$. The first input sys is the SYSTEM matrix of G.
See Also ltisys, splot, spol

Purpose \quad Select particular inputs and outputs in a MIMO system
Syntax subsys = ssub(sys,inputs,outputs)
Description

Example
If p is a system with 3 inputs and 6 outputs, a realization of the transfer function from the input channels 1,3 to the output channels $4,5,6$ is obtained as:

$$
\operatorname{ssub}(p,[1,3], 4: 6)
$$

The second and third arguments are the vectors of indices of the selected inputs/outputs. Inputs and outputs are labeled $1,2,3, \ldots$ starting from the top of the block diagram:

See Also ltisys, psys

Purpose

Syntax

Description

Specify the characteristics of an uncertainty block

```
block = ublock(dims,bound,type)
```

ublock is used to describe individual uncertainty blocks Δi in a block-diagonal uncertainty operator

$$
\Delta=\operatorname{diag}\left(\Delta_{1}, \ldots, \Delta_{n}\right)
$$

Such operators arise in the linear-fractional representation of uncertain dynamical systems (see "How to Derive Such Models" on page 2-23).

The first argument dims specifies the dimensions of Δi. Set dim $=[m, n]$ if Δ_{i} is m-by-n, i.e., has m outputs and n inputs. The second argument bound contains the quantitative information about the uncertainty (norm bound or sector bounds). Finally, type is a string specifying the dynamical and structural characteristics of Δ_{i}.

The string type consists of one- or two-letter identifiers marking the uncertainty block properties. Characteristic properties include:

- The dynamical nature: linear time invariant ('lti'), linear time varying ('ltv'), nonlinear memoryless ('nlm'), or arbitrary nonlinear ('nl'). The default is 'lti'
- The structure: ' f ' for full (unstructured) blocks and 's' for scalar blocks of the form
$\Delta_{i}=\delta_{i} x I_{r_{i}}$
Scalar blocks often arise when representing parameter uncertainty. They are also referred to as repeated scalars. The default is ' f '
- The phase information: the block can be complex-valued ('c') or real-valued (' r '). Complex-valued means arbitrary phase. The default is ' c '.

For instance, a real-valued time-varying scalar block is specified by setting type = 'tvsr'. The order of the property identifiers is immaterial.

Finally, the quantitative information can be of two types:

- Norm bound: here the second argument bound is either a scalar β for uniform bounds,

$$
\|\Delta\|_{\infty}<\beta,
$$

or a SISO shaping filter $W(s)$ for frequency-weighted bounds $\left\|W^{-1} \Delta\right\|_{\infty}<1$, that is,

$$
\sigma_{\max }(\Delta(j \omega))<|W(j \omega)| \text { for all } \omega
$$

- Sector bounds: set bound = [a b] to indicate that the response of $\Delta(\cdot)$ lies in the sector $\{a, b\}$. Valid values for a and b include Inf and Inf.

Example
See Also udiag, uinfo, slft, aff2lft

Purpose Form block-diagonal uncertainty structures
Syntax delta $=$ udiag(delta1, delta2, \ldots.
Description

See Also
ublock, udiag, slft, aff2lft

Purpose

Display the characteristics of a block-diagonal uncertainty structure

Syntax

uinfo(delta)

Description

See Also ublock, udiag

